177
Views
11
CrossRef citations to date
0
Altmetric
Original Research

Preparation And Antibacterial Effects Of Carboxymethyl Chitosan-Modified Photo-Responsive Camellia Sapogenin Derivative Cationic Liposomes

, , , &
Pages 8611-8626 | Published online: 01 Nov 2019

References

  • Xi YJ, Song T, Tang SY, et al. Preparation and antibacterial mechanism insight of polypeptide-based micelles with excellent antibacterial activities. Biomacromolecules. 2016;17(12):3922–3930. doi:10.1021/acs.biomac.6b0128527936717
  • Cécile M, Stermitz FR, George T, et al. Isoflavones as potentiators of antibacterial activity. J Agric Food Chem. 2003;51(19):5677–5679. doi:10.1021/jf030271412952418
  • Obonyo M, Zhang L, Thamphiwatana S, et al. Antibacterial activities of liposomal linolenic acids against antibiotic-resistant Helicobacter pylori. Mol Pharm. 2012;9(9):2677–2685. doi:10.1021/mp300243w22827534
  • Guan M, Chen YM, Wei Y, et al. Long-lasting bactericidal activity through selective physical puncture and controlled ions release of polydopamine and silver nanoparticles-loaded TiO2 nanorods in vitro and in vivo. Int J Nanomed. 2019;14:2903–2914. doi:10.2147/IJN.S202625
  • Liao SJ, Zhang YP, Pan XH, et al. Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. Int J Nanomed. 2019;14:1469–1487. doi:10.2147/IJN.S191340
  • Araújo RD, Barbosa JM, Scotti MT, et al. Modulation of drug resistance in staphylococcus aureus with coumarin derivatives. Scientifica. 2016;15:1–6.
  • Tanud T, John B, Apichart S, et al. Antimycobacterial activity of cinnamate-based esters of the triterpenes botulinic, oleanolic and ursolic acids. Chem Pharm Bull. 2010;39(32):194–198.
  • Ye Y, Xing HT, Chen XL. Anti-inflammatory and analgesic activities of the hydrolyzed sasanqua saponins from the defatted seeds of Camellia oleifera. Arch Pharm Res. 2013;36(8):941–951. doi:10.1007/s12272-013-0138-y23625174
  • Ye Y, Yang Q, Fang F, et al. The Camelliagenin from defatted seeds of Camellia oleifera as antibiotic substitute to treat chicken against infection of Escherichia coli and Staphylococcus aureus. BMC Vet Res. 2015;11(1):214. doi:10.1186/s12917-015-0529-z26282272
  • Thakur M, Melzig MF, Fuchs H, et al. Chemistry and pharmacology of saponins: special focus on cytotoxic properties. Botanics. 2011;1:19–29.
  • Cheng SY, Wang CM, Cheng HL, et al. Biological activity of oleanane triterpene derivatives obtained by chemical derivatization. Molecules. 2013;18(10):13003–13019. doi:10.3390/molecules18101300324145793
  • Keduo Q, Reen-Yun K, Chin-Ho C, et al. Anti-AIDS agents 81. Design, synthesis, and structure-activity relationship study of botulinic acid and moronic acid derivatives as potent HIV maturation inhibitors. J Med Chem. 2010;53(8):3133–3141. doi:10.1021/jm901782m20329730
  • Ren TY, Lin XY, Zhang QY, et al. Encapsulation of azithromycin ion pair in liposome for enhancing ocular delivery and therapeutic efficacy on dry eye. Mol Pharm. 2018;15:4862–4871. doi:10.1021/acs.molpharmaceut.8b0051630251864
  • Zhang XR, Lei B, Wang YZ, et al. Dual-sensitive on-off switch in liposome bilayer for controllable drug release. Langmuir. 2019;35:5213–5220. doi:10.1021/acs.langmuir.8b0409430883134
  • Cuomo F, Mosca M, Murgia S, et al. Evidence for the role of hydrophobic forces on the interactions of nucleotide-monophosphates with cationic liposomes. J Colloid Interface Sci. 2013;410(22):146–151. doi:10.1016/j.jcis.2013.08.01324011561
  • Forier K, Raemdonck K, Smedt SCD, et al. Lipid and polymer nanoparticles for drug delivery to bacterial biofilms. J Control Release. 2014;190:607–623. doi:10.1016/j.jconrel.2014.03.05524794896
  • Wang H, Shi XF, Yu DF, et al. Antibacterial activity of geminized amphiphilic cationic homopolymers. Langmuir. 2015;31:13469–13477. doi:10.1021/acs.langmuir.5b0318226606647
  • Lin MH, Hung CF, Aljuffali IA, et al. Cationic amphiphile in phospholipid bilayer or oil-water interface of nanocarriers affects planktonic and biofilm bacteria killing. Nanomed Nanotechnol Biol Med. 2016;13:353–361. doi:10.1016/j.nano.2016.08.011
  • Nitin J, Rama S, Thanigaivel S, et al. Carboxymethyl-chitosan-tethered lipid vesicles: hybrid nanoblanket for oral delivery of paclitaxel. Biomacromolecules. 2013;14(7):2272–2282. doi:10.1021/bm400406x23721348
  • Hardiansyah A, Huang LY, Purwasasmita BS, et al. Novel pH-sensitive drug carriers of carboxymethyl-hexanoyl chitosan (Chitosonic Acid®) modified liposomes. RSC Adv. 2015;5:23134–23143. doi:10.1039/C4RA14834G
  • Fu YY, Zhang L, Yang Y, et al. Synergistic antibacterial effect of ultrasound microbubbles combined with chitosan-modified polymyxin B-loaded liposomes on biofilm-producing Acinetobacter baumannii. Int J Nanomed. 2019;14:1805–1815. doi:10.2147/IJN.S186571
  • Lei M, Ma G, Sha S, et al. Dual-functionalized liposome by co-delivery of paclitaxel with sorafenib for synergistic antitumor efficacy and reversion of multidrug resistance. Drug Deliv. 2019;26:262–272. doi:10.1080/10717544.2019.158079730856352
  • Zhang C, Dan W, Lu L, et al. Multifunctional hybrid liposome as a theragnostic platform for magnetic resonance imaging guided photothermal therapy. ACS Biomater Sci Eng. 2018;4(7):2597–2605. doi:10.1021/acsbiomaterials.8b00176
  • Zhan FX, Chen W, Wang ZJ, et al. Acid-activatable prodrug nanogels for efficient intracellular doxorubicin release. Biomacromolecules. 2011;12(10):3612–3620. doi:10.1021/bm200876x21905663
  • Liu CY, Jia G, Yang WL, et al. Magnetic mesoporous silica microspheres with thermo-sensitive polymer shell for controlled drug release. J Mat Chem. 2009;19(27):4764–4770. doi:10.1039/b902985k
  • Zhang H, Xue YN, Huang J, et al. Tailor-made magnetic nanocarriers with pH-induced charge reversal and pH-responsiveness to guide subcellular release of doxorubicin. J Mater Sci. 2015;50(6):2429–2442. doi:10.1007/s10853-014-8798-7
  • Alvarez-Lorenzo C, Bromberg L, Concheiro A. Light-sensitive intelligent drug delivery systems. Photochem Photobiol. 2010;85(4):848–860. doi:10.1111/j.1751-1097.2008.00530.x
  • Ye Y, Xing HT, Li Y. Nanoencapsulation of the sasanqua saponin from Camellia oleifera, its photo responsiveness and neuroprotective effects. Int J Nanomed. 2014;2014(1):4475–4484. doi:10.2147/IJN.S64313
  • Yang Q, Zhao C, Zhao J. Photoresponsive nanocapsulation of cobra neurotoxin and enhancement of its central analgesic effects under red light. Int J Nanomed. 2017;12:3463–3470. doi:10.2147/IJN.S132510
  • Qian Y. Preparation and antibacterial activity of photoresponsive Camellia sapogenin derivative cationic liposomes [dissertation]. Guangzhou: South China University of Technology; 2018.
  • Wu T, Zang XX, He MY, et al. Structure-activity relationship of flavonoids on their anti-Escherichia coli activity and inhibition of DNA gyrase. J Agric Food Chem. 2013;61(34):8185–8190. doi:10.1021/jf402222v23926942
  • Lopes NA, Pinilla CM, Brandelli A. Antimicrobial activity of lysozyme-nisin co-encapsulated in liposomes coated with polysaccharides. Food Hydrocoll. 2019;93:1–9. doi:10.1016/j.foodhyd.2019.02.009
  • Li ZG, Chen J, Sun WQ, et al. Investigation of archaeosomes as carriers for oral delivery of peptides. Biochem Biophys Res Commun. 2010;394(2):412–417. doi:10.1016/j.ejmech.2017.02.01020226174
  • Yan XM, Tang BX, Liu MF. Phenanthrenes from Arundina graminifolia and in vitro evaluation of their antibacterial and anti-haemolytic properties. Nat Prod Res. 2018;32(6):707–710. doi:10.1080/14786419.2017.133260628553728
  • Huigens RWI, Richards JJ, Parise G, et al. Inhibition of Pseudomonas aeruginosa biofilm formation with bromoageliferin analogues. J Am Chem Soc. 2007;129(22):6966–6967. doi:10.1021/ja069017t17500516
  • H Q S, Sun FJ, Chen JH, et al. Opposite effects of cefoperazone and ceftazidime on S-ribosylhomocysteine lyase/autoinducer-2 quorum sensing and biofilm formation by an Escherichia coli clinical isolate. Mol Med Rep. 2014;10(5):2334–2340. doi:10.3892/mmr.2014.254025189202
  • He B, Ma S, Peng G, et al. TAT-modified self-assembled cationic peptide nanoparticles as an efficient antibacterial agent. Nanomed-Nanotechnol. 2018;14(2):365–372. doi:10.1016/j.nano.2017.11.002
  • Liu Q, Su RC, Yi WJ, et al. pH and reduction dual-responsive dipeptide cationic lipids with α-tocopherol hydrophobic tail for efficient gene delivery. Eur J Med Chem. 2017;129:1–11. doi:10.1016/j.ejmech.2017.02.01028214630
  • Zhi DF, Zhang SB, Cui SH, et al. The headgroup evolution of cationic lipids for gene delivery. Bioconjugate Chem. 2013;24(4):487–519. doi:10.1021/bc300381s