199
Views
14
CrossRef citations to date
0
Altmetric
Original Research

Biotinylated Single-Domain Antibody-Based Blocking ELISA for Detection of Antibodies Against Swine Influenza Virus

, , , & ORCID Icon
Pages 9337-9349 | Published online: 29 Nov 2019

References

  • Vincent AL, Lager KM, Anderson TK. A brief introduction to influenza A virus in swine. Methods Mol Biol. 2014;1161:243–258.24899434
  • Vincent AL, Perez DR, Rajao D, et al. Influenza A virus vaccines for swine. Vet Microbiol. 2017;206:35–44. doi:10.1016/j.vetmic.2016.11.02627923501
  • Janke BH. Influenza A virus infections in swine: pathogenesis and diagnosis. Vet Pathol. 2014;51(2):410–426. doi:10.1177/030098581351304324363301
  • Detmer S, Gramer M, Goyal S, Torremorell M, Torrison J. Diagnostics and surveillance for Swine influenza. Curr Top Microbiol Immunol. 2013;370:85–112. doi:10.1007/82_2012_22022566130
  • Ciacci-Zanella JR, Vincent AL, Prickett JR, Zimmerman SM, Zimmerman JJ. Detection of anti-influenza A nucleoprotein antibodies in pigs using a commercial influenza epitope-blocking enzyme-linked immunosorbent assay developed for avian species. J Vet Diagn Invest. 2010;22(1):3–9. doi:10.1177/10406387100220010220093676
  • Hamers-Casterman C, Atarhouch T, Muyldermans S, et al. Naturally occurring antibodies devoid of light chains. Nature. 1993;363(6428):446–448. doi:10.1038/363446a08502296
  • Muyldermans S, Atarhouch T, Saldanha J, Barbosa JA, Hamers R. Sequence and structure of VH domain from naturally occurring camel heavy chain immunoglobulins lacking light chains. Protein Eng. 1994;7(9):1129–1135. doi:10.1093/protein/7.9.11297831284
  • Arbabi Ghahroudi M, Desmyter A, Wyns L, Hamers R, Muyldermans S. Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett. 1997;414(3):521–526. doi:10.1016/S0014-5793(97)01062-49323027
  • Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem. 2013;82:775–797. doi:10.1146/annurev-biochem-063011-09244923495938
  • Liu Y, Huang H. Expression of single-domain antibody in different systems. Appl Microbiol Biotechnol. 2018;102(2):539–551. doi:10.1007/s00253-017-8644-329177623
  • Salvador JP, Vilaplana L, Marco MP. Nanobody: outstanding features for diagnostic and therapeutic applications. Anal Bioanal Chem. 2019. doi:10.1007/s00216-019-01633-4
  • Steeland S, Vandenbroucke RE, Libert C. Nanobodies as therapeutics: big opportunities for small antibodies. Drug Discov Today. 2016;21(7):1076–1113. doi:10.1016/j.drudis.2016.04.00327080147
  • Mir MA, Mehraj U, Sheikh BA, Hamdani SS. Nanobodies: the “magic bullets” in therapeutics, drug delivery and diagnostics. Hum Antibodies. 2019. doi:10.3233/HAB-190390
  • Liu H, Wang Y, Duan H, et al. An intracellularly expressed Nsp9-specific nanobody in MARC-145 cells inhibits porcine reproductive and respiratory syndrome virus replication. Vet Microbiol. 2015;181(3–4):252–260. doi:10.1016/j.vetmic.2015.10.02126525739
  • Wang L, Zhang L, Huang B, et al. A nanobody targeting viral nonstructural protein 9 inhibits porcine reproductive and respiratory syndrome virus replication. J Virol. 2019;93:4.
  • Liu H, Liang C, Duan H, et al. Intracellularly expressed nanobodies against non-structural protein 4 of porcine reproductive and respiratory syndrome virus inhibit virus replication. Biotechnol Lett. 2016;38(7):1081–1088. doi:10.1007/s10529-016-2086-327010387
  • Sheng Y, Wang K, Lu Q, et al. Nanobody-horseradish peroxidase fusion protein as an ultrasensitive probe to detect antibodies against Newcastle disease virus in the immunoassay. J Nanobiotechnology. 2019;17(1):35. doi:10.1186/s12951-019-0468-030823927
  • Vincke C, Gutierrez C, Wernery U, Devoogdt N, Hassanzadeh-Ghassabeh G, Muyldermans S. Generation of single domain antibody fragments derived from camelids and generation of manifold constructs. Methods Mol Biol. 2012;907:145–176.22907350
  • Kramer K, Fiedler M, Skerra A, Hock B. A generic strategy for subcloning antibody variable regions from the scFv phage display vector pCANTAB 5 E into pASK85 permits the economical production of F(ab) fragments and leads to improved recombinant immunoglobulin stability. Biosens Bioelectron. 2002;17(4):305–313. doi:10.1016/S0956-5663(01)00292-511849927
  • Schatz PJ. Use of peptide libraries to map the substrate specificity of a peptide-modifying enzyme: a 13 residue consensus peptide specifies biotinylation in Escherichia coli. Biotechnology (N Y). 1993;11(10):1138–1143. doi:10.1038/nbt1093-11387764094
  • Fevereiro M, Barros S, Fagulha T. Development of a monoclonal antibody blocking-ELISA for detection of antibodies against Maedi-Visna virus. J Virol Methods. 1999;81(1–2):101–108. doi:10.1016/S0166-0934(99)00061-010488767
  • Todd D, Mawhinney KA, Graham DA, Scott AN. Development of a blocking enzyme-linked immunosorbent assay for the serological diagnosis of chicken anaemia virus. J Virol Methods. 1999;82(2):177–184. doi:10.1016/S0166-0934(99)00099-310894634
  • Zhou D, Pei C, Yang K, et al. Development and application of a monoclonal-antibody-based blocking ELISA for detection of Japanese encephalitis virus NS1 antibodies in swine. Arch Virol. 2019;164(6):1535–1542. doi:10.1007/s00705-019-04218-930900070
  • Deng J, Liu Y, Jia R, et al. Development of an immunochromatographic strip for detection of antibodies against duck Tembusu virus. J Virol Methods. 2017;249:137–142. doi:10.1016/j.jviromet.2017.08.02228864043
  • Chen Y, Zhao Q, Liu B, et al. A novel blocking ELISA for detection of antibodies against hepatitis E virus in domestic pigs. PLoS One. 2016;11(3):e0152639. doi:10.1371/journal.pone.015263927023902
  • Liu B, Zhao Q, Sun Y, et al. Development of a blocking ELISA for detection of antibodies against avian hepatitis E virus. J Virol Methods. 2014;204:1–5. doi:10.1016/j.jviromet.2014.03.02324735599
  • Boonham N, Kreuze J, Winter S, et al. Methods in virus diagnostics: from ELISA to next generation sequencing. Virus Res. 2014;186:20–31. doi:10.1016/j.virusres.2013.12.00724361981
  • Hornbeck PV. Enzyme-linked immunosorbent assays. Curr Protoc Immunol. 2015;110:21–23. doi:10.1002/0471142735.2015.110.issue-1
  • Rodrigues ME, Costa AR, Henriques M, Azeredo J, Oliveira R. Technological progresses in monoclonal antibody production systems. Biotechnol Prog. 2010;26(2):332–351. doi:10.1002/btpr.34820043321
  • Noton SL, Simpson-Holley M, Medcalf E, et al. Studies of an influenza A virus temperature-sensitive mutant identify a late role for NP in the formation of infectious virions. J Virol. 2009;83(2):562–571. doi:10.1128/JVI.01424-0818987140
  • Konstantinou GN. Enzyme-Linked Immunosorbent Assay (ELISA). Methods Mol Biol. 2017;1592:79–94.28315213
  • Beckett D, Kovaleva E, Schatz PJ. A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation. Protein Sci. 1999;8(4):921–929. doi:10.1110/ps.8.4.92110211839
  • Barat B, Wu AM. Metabolic biotinylation of recombinant antibody by biotin ligase retained in the endoplasmic reticulum. Biomol Eng. 2007;24(3):283–291. doi:10.1016/j.bioeng.2007.02.00317379573
  • Cull MG, Schatz PJ. Biotinylation of proteins in vivo and in vitro using small peptide tags. Method Enzymol. 2000;326:430–440.
  • de Boer E, Rodriguez P, Bonte E, et al. Efficient biotinylation and single-step purification of tagged transcription factors in mammalian cells and transgenic mice. P Natl Acad Sci USA. 2003;100(13):7480–7485. doi:10.1073/pnas.1332608100
  • Huang L, Muyldermans S, Saerens D. Nanobodies (R): proficient tools in diagnostics. Expert Rev Mol Diagn. 2010;10(6):777–785. doi:10.1586/erm.10.6220843201
  • Rajao DS, Anderson TK, Gauger PC, Vincent AL. Pathogenesis and vaccination of influenza a virus in swine. Curr Top Microbiol. 2014;385:307–326.
  • Ohst C, Saschenbrecker S, Stiba K, et al. Reliable serological testing for the diagnosis of emerging infectious diseases. Adv Exp Med Biol. 2018;1062:19–43.29845523