185
Views
7
CrossRef citations to date
0
Altmetric
Original Research

Lactobionic Acid Conjugated Quercetin Loaded Organically Modified Silica Nanoparticles Mitigates Cyclophosphamide Induced Hepatocytotoxicity

ORCID Icon, & ORCID Icon
Pages 8943-8959 | Published online: 18 Nov 2019

References

  • Rehman MU, Tahir M, Ali F, et al. Cyclophosphamide-induced nephrotoxicity, genotoxicity, and damage in kidney genomic DNA of Swiss albino mice: the protective effect of Ellagic acid. Mol Cell Biochem. 2012;365:119–127. doi:10.1007/s11010-012-1250-x22286819
  • Haubitz M. Acute and long-term toxicity of cyclophosphamide. Transplantationsmedizin. 2007;19:26–31.
  • Zarei M, Shivanandappa T. Amelioration of cyclophosphamide-induced hepatotoxicity by the root extract of decalepis hamiltonii in mice. Food Chem Toxicol. 2013;57:179–184. doi:10.1016/j.fct.2013.03.02823542512
  • Mohammad MK, Avila D, Zhang J, et al. Acrolein cytotoxicity in hepatocytes involves endoplasmic reticulum stress, mitochondrial dysfunction and oxidative stress. Toxicol Appl Pharmacol. 2012;265:73–82. doi:10.1016/j.taap.2012.09.02123026831
  • Adams JD, Klaidman LK. Acrolein-induced oxygen radical formation. Free Radic Biol Med. 1993;15:187–193. doi:10.1016/0891-5849(93)90058-38397144
  • Kim YW, Ki SH, Lee JR, et al. Liquiritigenin, an aglycone of liquiritin in Glycyrrhizae radix, prevents acute liver injuries in rats induced by acetaminophen with or without buthionine sulfoximine. Chem Biol Interact. 2006;161:125–138. doi:10.1016/j.cbi.2006.03.00816647697
  • Wagoner J, Negash A, Kane OJ, et al. Multiple effects of silymarin on the hepatitis C virus lifecycle. Hepatology. 2010;51:1912–1921. doi:10.1002/hep.2358720512985
  • Manna P, Sinha M, Sil PC. Protection of arsenic-induced hepatic disorder by arjunolic acid. Basic Clin Pharmacol Toxicol. 2007;101:333–338. doi:10.1111/pto.2007.101.issue-517910617
  • Zhao X, Cong X, Zheng L, Xu L, Yin L, Peng J. Dioscin, a natural steroid saponin, shows remarkable protective effect against acetaminophen-induced liver damage in vitro and in vivo. Toxicol Lett. 2012;214:69–80. doi:10.1016/j.toxlet.2012.08.00522939915
  • Erlund I. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr Res. 2004;24:851–874. doi:10.1016/j.nutres.2004.07.005
  • Erden Inal M, Kahraman A. The protective effect of flavonol quercetin against ultraviolet a induced oxidative stress in rats. Toxicology. 2000;154:21–29. doi:10.1016/S0300-483X(00)00268-711118667
  • Igura K, Ohta T, Kuroda Y, Kaji K. Resveratrol and quercetin inhibit angiogenesis in vitro. Cancer Lett. 2001;171:11–16. doi:10.1016/S0304-3835(01)00443-811485823
  • Yang K, Lamprecht SA, Liu Y, et al. Chemoprevention studies of the flavonoids quercetin and rutin in normal and azoxymethane-treated mouse colon. Carcinogenesis. 2000;21:1655–1660. doi:10.1093/carcin/21.9.165510964096
  • Sorata Y, Takahama U, Kimura M. Protective effect of quercetin and rutin on photosensitized lysis of human erythrocytes in the presence of hematoporphyrin. Biochim Biophys Acta Gen Subj. 1984;799:313–317. doi:10.1016/0304-4165(84)90276-9
  • Bona S, Filippin LI, Di Naso FC, et al. Effect of antioxidant treatment on fibrogenesis in rats with carbon tetrachloride-induced cirrhosis. ISRN Gastroenterol. 2012;2012:1–7. doi:10.5402/2012/762920
  • Chen X, Yin OQP, Zuo Z, Chow MSS. Pharmacokinetics and modeling of quercetin and metabolites. Pharm Res. 2005;22:892–901. doi:10.1007/s11095-005-4584-115948033
  • Harwood M, Danielewska B, Borzelleca JF, Flamm GW, Williams GM, Lines TC. A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. Food Chem Toxicol. 2007;45:2179–2205. doi:10.1016/j.fct.2007.05.01517698276
  • Justino GC, Santos MR, Canário S, Borges C, Florêncio MH, Mira L. Plasma quercetin metabolites: structure-antioxidant activity relationships. Arch Biochem Biophys. 2004;432:109–121. doi:10.1016/j.abb.2004.09.00715519302
  • Kumar R, Roy I, Ohulchanskyy TY, et al. Covalently dye-linked, surface-controlled, and bioconjugated organically modified silica nanoparticles as targeted probes for optical imaging. ACS Nano. 2008;2:449–456. doi:10.1021/nn700370b19206569
  • Liu H, Wang H, Xu Y, et al. Lactobionic acid-modified dendrimer-entrapped gold nanoparticles for targeted computed tomography imaging of human hepatocellular carcinoma. ACS Appl Mater Interfaces. 2014;6:6944–6953. doi:10.1021/am500761x24712914
  • Maitra A, Dinda AK, Prashant CK, Naqvi S, Unnithan J, Samim M. Curcumin loaded organically modified silica (ORMOSIL) nanoparticle; a novel agent for cancer therapy. Int J Nanotechnol. 2012;9:862–871. doi:10.1504/IJNT.2012.049451
  • Chen G, Li D, Li J, et al. Targeted doxorubicin delivery to hepatocarcinoma cells by lactobionic acid-modified laponite nanodisks. New J Chem. 2015;39:2847–2855. doi:10.1039/C4NJ01916D
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–275.14907713
  • Dwivedi DK, Jena GB. Glibenclamide protects against thioacetamide-induced hepatic damage in Wistar rat: investigation on NLRP3, MMP-2, and stellate cell activation. Naunyn Schmiedebergs Arch Pharmacol. 2018;391:1257–1274. doi:10.1007/s00210-018-1540-230066023
  • Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–358. doi:10.1016/0003-2697(79)90738-336810
  • Kakkar P, Das B, Viswanathan PN. A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys. 1984;21:130–132.6490072
  • Sinha AK. Colorimetric assay of catalase. Anal Biochem. 1972;47:389–394. doi:10.1016/0003-2697(72)90132-74556490
  • Hissin PJ, Hilf R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem. 1976;74:214–226. doi:10.1016/0003-2697(76)90326-2962076
  • Habig WH, Michael J, Pabst WBJ. The first enzymetic step in mercapturic acid formation. J Biol Chem. 1974;249:7130–7140.4436300
  • Sherif IO. The effect of natural antioxidants in cyclophosphamide-induced hepatotoxicity: role of Nrf2/HO-1 pathway. Int Immunopharmacol. 2018;61:29–36. doi:10.1016/j.intimp.2018.05.00729800788
  • Olayinka ET, Ore A, Ola OS, Adeyemo OA. Protective effect of quercetin on melphalan-induced oxidative stress and impaired renal and hepatic functions in rat. Chemother Res Pract. 2014;2014:1–8. doi:10.1155/2014/936526
  • Verma SK, Rastogi S, Arora I, Javed K, Akhtar M, Samim M. Nanoparticle based delivery of quercetin for the treatment of carbon tetrachloride mediated liver cirrhosis in rats. J Biomed Nanotechnol. 2016;12:274–285. doi:10.1166/jbn.2016.215327305761
  • Ashkani S, Bagheri F, Azarpira N, et al. Protective effects of quercetin on thioacetamide-induced acute liver damage and its related biochemical and pathological alterations. Egypt J Intern Med. 2017;28:123.
  • Chen X. Protective effects of quercetin on liver injury induced by ethanol. Pharmacogn Mag. 2010;6:135. doi:10.4103/0973-1296.6290020668581
  • Lakshmi T, Sri Renukadevi B, Senthilkumar S, et al. Seed and bark extracts of Acacia catechu protects liver from acetaminophen induced hepatotoxicity by modulating oxidative stress, antioxidant enzymes and liver function enzymes in Wistar rat model. Biomed Pharmacother. 2018;108:838–844. doi:10.1016/j.biopha.2018.08.07730372895
  • Zhai X, Zhang Z, Liu W, et al. Protective effect of ALDH2 against cyclophosphamide-induced acute hepatotoxicity via attenuating oxidative stress and reactive aldehydes. Biochem Biophys Res Commun. 2018;499:93–98. doi:10.1016/j.bbrc.2018.03.04129524404
  • Sreelatha S, Padma PR, Umadevi M. Protective effects of Coriandrum sativum extracts on carbon tetrachloride-induced hepatotoxicity in rats. Food Chem Toxicol. 2009;47:702–708. doi:10.1016/j.fct.2008.12.02219146910
  • Kabirifar R, Ghoreshi ZA, Safari F, Karimollah A, Moradi A, Eskandari-nasab E. Quercetin protects liver injury induced by bile duct ligation via attenuation of Rac1 and NADPH oxidase1 expression in rats. Hepatobiliary Pancreat Dis Int. 2017;16:88–95. doi:10.1016/S1499-3872(16)60164-928119263
  • Ezhilarasan D. Oxidative stress is bane in chronic liver diseases: clinical and experimental perspective. Arab J Gastroenterol. 2018;19:56–64. doi:10.1016/j.ajg.2018.03.00229853428
  • Raghu R, Karthikeyan S. Zidovudine and isoniazid induced liver toxicity and oxidative stress: evaluation of mitigating properties of silibinin. Environ Toxicol Pharmacol. 2016;46:217–224. doi:10.1016/j.etap.2016.07.01427497728
  • Gutteridge JMC. Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem. 1995;41:1819.7497639
  • Basu A, Bhattacharjee A, Samanta A, Bhattacharya S. Prevention of cyclophosphamide-induced hepatotoxicity and genotoxicity: effect of an l-cysteine based oxovanadium(IV) complex on oxidative stress and DNA damage. Environ Toxicol Pharmacol. 2015;40:747–757. doi:10.1016/j.etap.2015.08.03526432771
  • Tzankova V, Aluani D, Kondeva-Burdina M, et al. Hepatoprotective and antioxidant activity of quercetin loaded chitosan/alginate particles in vitro and in vivo in a model of paracetamol-induced toxicity. Biomed Pharmacother. 2017;92:569–579. doi:10.1016/j.biopha.2017.05.00828577496
  • Oyagbemi AA, Omobowale OT, Asenuga ER, Akinleye AS, Ogunsanwo RO, Saba AB. Cyclophosphamide-induced hepatotoxicity in wistar rats: the modulatory role of gallic acid as a hepatoprotective and chemopreventive phytochemical. Int J Prev Med. 2016;61:29–36.
  • Singh C, Prakash C, Tiwari KN, Mishra SK, Kumar V. Premna integrifolia ameliorates cyclophosphamide-induced hepatotoxicity by modulation of oxidative stress and apoptosis. Biomed Pharmacother. 2018;107:634–643. doi:10.1016/j.biopha.2018.08.03930118879
  • Lin SY, Wang YY, Chen WY, Chuang YH, Pan PH, Chen CJ. Beneficial effect of quercetin on cholestatic liver injury. J Nutr Biochem. 2014;25:1183–1195. doi:10.1016/j.jnutbio.2014.06.00325108658
  • Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95. doi:10.1152/physrev.00018.200111773609
  • Chakraborty P, Roy SS, Basu A, Bhattacharya S. Sensitization of cancer cells to cyclophosphamide therapy by an organoselenium compound through ROS-mediated apoptosis. Biomed Pharmacother. 2016;84:1992–1999. doi:10.1016/j.biopha.2016.11.00627856111
  • HA D, van Ommen B, van Bladeren PJ. Involvement of human glutathione s-transferase isoenzymes in the conjugation of cyclophosphamide metabolites with glutathione. Cancer Res. 1994;54:6215–6220.7954469
  • Tuorkey MJ. Therapeutic potential of nigella sativa oil against cyclophosphamide-induced DNA damage and hepatotoxicity. Nutr Cancer. 2017;69:498–504. doi:10.1080/01635581.2017.128540828287318
  • Mahmoud AM. Hesperidin protects against cyclophosphamide-induced hepatotoxicity by upregulation of PPARγ and abrogation of oxidative stress and inflammation. Can J Physiol Pharmacol. 2014;92:717–724. doi:10.1139/cjpp-2014-020425079140