171
Views
7
CrossRef citations to date
0
Altmetric
Original Research

A comparative study: the prospective influence of nanovectors in leveraging the chemopreventive potential of COX-2 inhibitors against skin cancer

ORCID Icon, , , , &
Pages 7561-7581 | Published online: 17 Sep 2019

References

  • Ijaz S, Akhtar N, Khan MS, et al. Plant derived anticancer agents: a green approach towards skin cancers. Biomed Pharmacother. 2018;103:1643–1651. doi:10.1016/j.biopha.2018.04.11329864953
  • Goyal R, Macri LK, Kaplan HM, Kohn J. Nanoparticles and nanofibers for topical drug delivery. J Controlled Release. 2016;240:77–92. doi:10.1016/j.jconrel.2015.10.049
  • Simoes MCF, Sousa JJS, Pais A. Skin cancer and new treatment perspectives: a review. Cancer Lett. 2015;357(1):8–42. doi:10.1016/j.canlet.2014.11.00125444899
  • Kono M, Watanabe M, Abukawa H, Hasegawa O, Satomi T, Chikazu D. Cyclo-oxygenase–2 expression is associated with vascular endothelial growth factor C expression and lymph node metastasis in oral squamous cell carcinoma. J Oral Maxillofacial Surg. 2013;71(10):1694–1702. doi:10.1016/j.joms.2013.04.015
  • Su J, Shih J, Yen M, et al. Cyclooxygenase-2 induces EP1-and HER-2/Neu-dependent vascular endothelial growth factor-C up-regulation: a novel mechanism of lymphangiogenesis in lung adenocarcinoma. Cancer Res. 2004;64(2):554–564.14744769
  • Tendo M, Yashiro M, Nakazawa K, et al. A synergic inhibitory-effect of combination with selective cyclooxygenase-2 inhibitor and S-1 on the peritoneal metastasis for scirrhous gastric cancer cells. Cancer Lett. 2006;244(2):247–251. doi:10.1016/j.canlet.2005.12.01916448745
  • Sorski L, Melamed R, Matzner P, et al. Reducing liver metastases of colon cancer in the context of extensive and minor surgeries through beta-adrenoceptors blockade and COX2 inhibition. Brain Behav Immun. 2016;58:91–98. doi:10.1016/j.bbi.2016.05.01727235931
  • Kapadia GJ, Azuine MA, Shigeta Y, Suzuki N, Tokuda H. Chemopreventive activities of etodolac and oxyphenbutazone against mouse skin carcinogenesis. Bioorg Med Chem Lett. 2010;20(8):2546–2548. doi:10.1016/j.bmcl.2010.02.09320299217
  • Harris RE, Alshafie GA, Abou-Issa H, Seibert K. Chemoprevention of breast cancer in rats by celecoxib, a cyclooxygenase 2 inhibitor. Cancer Res. 2000;60(8):2101–2103.10786667
  • Reddy BS, Hirose Y, Lubet R, et al. Chemoprevention of colon cancer by specific cyclooxygenase-2 inhibitor, celecoxib, administered during different stages of carcinogenesis. Cancer Res. 2000;60(2):293–297.10667579
  • Lin J, Hsiao P, Chiu T, Chao J. Combination of cyclooxygenase-2 inhibitors and oxaliplatin increases the growth inhibition and death in human colon cancer cells. Biochem Pharmacol. 2005;70(5):658–667. doi:10.1016/j.bcp.2005.05.02816004971
  • Shogo M, Adachi M, Kioi M, Torigoe S, Ijichi K, Hasegawa Y, et al. Etodolac improves 5-FU sensitivity of head and neck cancer cells through inhibition of thymidylate synthase. Anticancer Res. 2011;31:2893–2898.21868535
  • Ratnasinghe D, Daschner PJ, Anver MR, et al. Cyclooxygenase-2, P-glycoprotein-170 and drug resistance; is chemoprevention against multidrug resistance possible? Anticancer Res. 2001;21(3C):2141–2147.11501838
  • Hasegawa K, Ishikawa K, Kawai S, et al. Overcoming paclitaxel resistance in uterine endometrial cancer using a COX-2 inhibitor. Oncol Rep. 2013;30(6):2937–2944. doi:10.3892/or.2013.279024100466
  • Lúcio M, Ferreira H, Lima J, Reis S. Use of liposomes as membrane models to evaluate the contribution of drug–membrane interactions to antioxidant properties of etodolac. Redox Rep. 2013;13(5):225–236. doi:10.1179/135100008X308939
  • Goindi S, Kaur R, Kaur R. An ionic liquid-in-water microemulsion as a potential carrier for topical delivery of poorly water soluble drug: development, ex-vivo and in-vivo evaluation. Int J Pharm. 2015;495(2):913–923. doi:10.1016/j.ijpharm.2015.09.06626456294
  • Yamamoto K, Kitayama W, Denda A, et al. Suppressive effects of a selective cyclooxygenase-2 inhibitor, etodolac, on 4-nitroquinoline 1-oxide-induced rat tongue carcinogenesis. Exp Toxicol Pathol. 2004;56(3):145–151. doi:10.1016/j.etp.2004.07.00115625783
  • de Souza Thiago L, Da Costa ES, Lopes DV, Borojevic R. Racemic etodolac is cytotoxic and cytostatic for B-cell precursor acute lymphoblastic leukemia cells. Biomed Pharmacother. 2009;63(7):548–551. doi:10.1016/j.biopha.2008.09.00918993025
  • Okamoto A, Shirakawa T, Bito T, et al. Etodolac, a selective cyclooxygenase-2 inhibitor, induces upregulation of E-cadherin and has antitumor effect on human bladder cancer cells in vitro and in vivo. Urology. 2008;71(1):156–160. doi:10.1016/j.urology.2007.09.06118242386
  • Magari H, Shimizu Y, Inada K, et al. Inhibitory effect of etodolac, a selective cyclooxygenase-2 inhibitor, on stomach carcinogenesis in Helicobacter pylori-infected Mongolian gerbils. Biochem Biophys Res Commun. 2005;334(2):606–612. doi:10.1016/j.bbrc.2005.06.13216009342
  • Mishima K, Nariai Y, Yoshimura Y. Etodolac, a selective cyclo-oxygenase-2 inhibitor, enhances carboplatin-induced apoptosis of human tongue carcinoma cells by down-regulation of FAP-1 expression. Oral Oncol. 2005;41(1):77–81. doi:10.1016/j.oraloncology.2004.06.00915598589
  • Boakye CHA, Patel K, Doddapaneni R, et al. Ultra-flexible nanocarriers for enhanced topical delivery of a highly lipophilic antioxidative molecule for skin cancer chemoprevention. Colloids Surf B Biointerfaces. 2016;143:156–167. doi:10.1016/j.colsurfb.2016.03.03627003466
  • Fernandes RS, Silva JO, Monteiro LOF, et al. Doxorubicin-loaded nanocarriers: a comparative study of liposome and nanostructured lipid carrier as alternatives for cancer therapy. Biomed Pharmacother. 2016;84:252–257. doi:10.1016/j.biopha.2016.09.03227664949
  • Boakye CH, Patel K, Singh M. Doxorubicin liposomes as an investigative model to study the skin permeation of nanocarriers. Int J Pharm. 2015;489(1–2):106–116. doi:10.1016/j.ijpharm.2015.04.05925910414
  • Oskuie AB, Nasrollahi S, Nafisi S. Design, synthesis of novel vesicular systems using turpentine as a skin permeation enhancer. J Drug Deliv Sci Technol. 2018;43:327–332. doi:10.1016/j.jddst.2017.10.015
  • Nguyen H, Munnier E, Soucé M, et al. Novel alginate-based nanocarriers as a strategy to include high concentrations of hydrophobic compounds in hydrogels for topical application. Nanotechnology. 2015;26(25):255101. doi:10.1088/0957-4484/26/25/25510126033822
  • Gupta M, Goyal AK, Paliwal SR, et al. Development and characterization of effective topical liposomal system for localized treatment of cutaneous candidiasis. J Liposome Res. 2010;20(4):341–350. doi:10.3109/0898210100359612520163329
  • Sarmento B, Ferreira D, Veiga F, Ribeiro A. Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohydr Polym. 2006;66(1):1–7. doi:10.1016/j.carbpol.2006.02.008
  • Grillo R, de Melo NF, de Araujo DR, de Paula E, Rosa AH, Fraceto LF. Polymeric alginate nanoparticles containing the local anesthetic bupivacaine. J Drug Target. 2010;18(9):688–699. doi:10.3109/1061186100364973820196632
  • Barakat NS. Etodolac-liquid-filled dispersion into hard gelatin capsules: an approach to improve dissolution and stability of etodolac formulation. Drug Dev Ind Pharm. 2006;32(7):865–876. doi:10.1080/0363904050053419216908424
  • Sallam MA, Motawaa AM, Mortada SM. An insight on human skin penetration of diflunisal: lipogel versus hydrogel microemulsion. Drug Dev Ind Pharm. 2015;41(1):141–147. doi:10.3109/03639045.2013.85071124171693
  • Sallam MA, Boscá M. Mechanistic analysis of human skin distribution and follicular targeting of adapalene loaded biodegradable nanospheres with an insight into hydrogel matrix influence, in-vitro skin irritation and in-vivo tolerability. J Pharm Sci. 2017. doi:10.1016/j.xphs.2017.05.038
  • Mohyeldin SM, Mehanna MM, Elgindy NA. Superiority of liquid crystalline cubic nanocarriers as hormonal transdermal vehicle: comparative human skin permeation-supported evidence. Expert Opin Drug Deliv. 2016;13(8):1049–1064. doi:10.1080/17425247.2016.118249027167758
  • Shankar S, Pangeni R, Park J, Rhim J. Preparation of sulfur nanoparticles and their antibacterial activity and cytotoxic effect. Mater Sci Eng. 2018. doi:10.1016/j.msec.2018.07.015
  • Gibadullina NN, Latypova DR, Vakhitov VA, et al. Synthesis and cytotoxic activities of difluoroacetyl-substituted hexahydropyrimidine derivatives. J Fluor Chem. 2018;211:94–99. doi:10.1016/j.jfluchem.2018.04.011
  • Li -W-W, Long G-X, Liu D-B, et al. Cyclooxygenase-2 inhibitor celecoxib suppresses invasion and migration of nasopharyngeal carcinoma cell lines through a decrease in matrix metalloproteinase-2 and −9 activity. Pharmazie. 2014;69:132–137.24640603
  • Lazarus H, Tegeler W, Mazzone HM, Leroy JG, Boone BA, Foley GE. Determination of sensitivity of individual biopsy specimens to potential inhibitory agents: evaluation of some explant culture methods as assay systems. Cancer Chemother Rep. 1966;50(8):543–555.5978727
  • Abd-Alhaseeb MM, Zaitone SA, Abou-El-Ela SHM, Moustafa YM. Olmesartan potentiates the anti-angiogenic effect of sorafenib in mice bearing Ehrlich’s ascites carcinoma: role of angiotensin (1–7). PLoS One. 2014;9(1):e85891. doi:10.1371/journal.pone.008589124465768
  • Hsu SM, Raine L, Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem. 1981;29(4):577–580. doi:10.1177/29.4.61666616166661
  • Iqbal B, Ali J, Baboota S. Silymarin loaded nanostructured lipid carrier: from design and dermatokinetic study to mechanistic analysis of epidermal drug deposition enhancement. J Mol Liq. 2018;255:513–529. doi:10.1016/j.molliq.2018.01.141
  • Raza K, Singh B, Lohan S, et al. Nano-lipoidal carriers of tretinoin with enhanced percutaneous absorption, photostability, biocompatibility and anti-psoriatic activity. Int J Pharm. 2013;456(1):65–72. doi:10.1016/j.ijpharm.2013.08.01923973754
  • Hoeller S, Sperger A, Valenta C. Lecithin based nanoemulsions: a comparative study of the influence of non-ionic surfactants and the cationic phytosphingosine on physicochemical behaviour and skin permeation. Int J Pharm. 2009;370(1–2):181–186. doi:10.1016/j.ijpharm.2008.11.01419073240
  • Rocha KAD, Krawczyk-Santos AP, Andrade LM, et al. Voriconazole-loaded nanostructured lipid carriers (NLC) for drug delivery in deeper regions of the nail plate. Int J Pharm. 2017;531(1):292–298. doi:10.1016/j.ijpharm.2017.08.11528859937
  • López-García R, Ganem-Rondero A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): occlusive effect and penetration enhancement ability. J Cosmet Dermatological Sci Appl. 2015;5(02):62. doi:10.4236/jcdsa.2015.52008
  • Ma R, Levard C, Marinakos S, et al. Size-controlled dissolution of organic-coated silver nanoparticles. Environ Sci Technol. 2011;46(2):752–759. doi:10.1021/es201686j22142034
  • Anwar DM, Khattab SN, Helmy MW, et al. Lactobionic/folate dual-targeted amphiphilic maltodextrin-based micelles for targeted codelivery of sulfasalazine and resveratrol to hepatocellular carcinoma. Bioconjug Chem. 2018;29(9):3026–3041. doi:10.1021/acs.bioconjchem.8b0042830110148
  • Vijayakumar A, Baskaran R, Jang Y, Oh S, Yoo B. Quercetin-loaded solid lipid nanoparticle dispersion with improved physicochemical properties and cellular uptake. AAPS PharmSciTech. 2016;18(3):875–883.27368922
  • Pavan KC, Padmapreetha J. Formulation and in-vitro evaluation of gel containing ethosomes entrapped with etodolac. IJPSR. 2014;5:2.
  • Chen Y, Yang X, Zhao L, et al. Preparation and characterization of a nanostructured lipid carrier for a poorly soluble drug. Colloids Surf A. 2014;455:36–43. doi:10.1016/j.colsurfa.2014.04.032
  • Khampienga T, Aramwitb P, Supaphol P. Silk sericin loaded alginate nanoparticles: preparation and anti-inflammatory efficacy. Int J Biol Macromol. 2015;1(80):636–643.
  • Hans M, Lowman A. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci. 2002;6(4):319–327. doi:10.1016/S1359-0286(02)00117-1
  • Chen H, Wang Y, Zhai Y, Zhai G, Wang Z, Liu J. Development of a ropivacaine-loaded nanostructured lipid carrier formulation for transdermal delivery. Colloids Surf A. 2015;465:130–136. doi:10.1016/j.colsurfa.2014.10.046
  • Katare O, Raza K, Singh B, Dogra S. Novel drug delivery systems in topical treatment of psoriasis: rigors and vigors. Indian J Dermatol Venereol Leprol. 2010;76(6):612. doi:10.4103/0378-6323.7245121079304
  • Contri RV, Fiel LA, Alnasif N, Pohlmann AR, Guterres SS, Schafer-Korting M. Skin penetration and dermal tolerability of acrylic nanocapsules: influence of the surface charge and a chitosan gel used as vehicle. Int J Pharm. 2016;507(1–2):12–20. doi:10.1016/j.ijpharm.2016.03.04627130364
  • Gillet A, Compère P, Lecomte F, et al. Liposome surface charge influence on skin penetration behaviour. Int J Pharm. 2011;411(1–2):223–231. doi:10.1016/j.ijpharm.2011.03.04921458550
  • Zhou W, Liu W, Zou L, et al. Storage stability and skin permeation of vitamin C liposomes improved by pectin coating. Colloids Surf B Biointerfaces. 2014;117:330–337. doi:10.1016/j.colsurfb.2014.02.03624681045
  • Sala M, Diab R, Elaissari A, Fessi H. Lipid nanocarriers as skin drug delivery systems: properties, mechanisms of skin interactions and medical applications. Int J Pharm. 2018;535(1–2):1–17. doi:10.1016/j.ijpharm.2017.10.04629111097
  • Alvarez-Roman R, Naik A, Kalia YN, Fessi H, Guy RH. Visualization of skin penetration using confocal laser scanning microscopy. Eur J Pharm Biopharm. 2004;58(2):301–316. doi:10.1016/j.ejpb.2004.03.02715296957
  • Subongkot T, Wonglertnirant N, Songprakhon P, Rojanarata T, Opanasopit P, Ngawhirunpat T. Visualization of ultradeformable liposomes penetration pathways and their skin interaction by confocal laser scanning microscopy. Int J Pharm. 2013;441(1–2):151–161. doi:10.1016/j.ijpharm.2012.12.00323247017
  • Chen-yu G, Chun-fen Y, Qi-lu L, et al. Development of a quercetin-loaded nanostructured lipid carrier formulation for topical delivery. Int J Pharm. 2012;430(1–2):292–298. doi:10.1016/j.ijpharm.2012.03.04222486962
  • Foldvari M, Badea I, Wettig S, et al. Topical delivery of interferon alpha by biphasic vesicles: evidence for a novel nanopathway across the stratum corneum. Mol Pharm. 2010;7(3):751–762. doi:10.1021/mp900283x20349952
  • Kasetvatin C, Rujivipat S, Tiyaboonchai W. Combination of elastic liposomes and low frequency ultrasound for skin permeation enhancement of hyaluronic acid. Colloids Surf B Biointerfaces. 2015;135:458–464. doi:10.1016/j.colsurfb.2015.07.07826280820
  • Freag MS, Elnaggar YS, Abdelmonsif DA, Abdallah OY. Layer-by-layer-coated lyotropic liquid crystalline nanoparticles for active tumor targeting of rapamycin. Nanomedicine. 2006;11(22):2975–2996. doi:10.2217/nnm-2016-0236
  • Noda M, Sugihara H, Tatsumi Y, et al. Effects of etodolac, a selective cyclooxygenase-2 inhibitor on the expression of E-cadherin-catenin complexes in gastrointestinal cell lines. J Gastroenterol. 2002;37:896–904. doi:10.1007/s00535020015112483244
  • Liang CC, Park AY, Guan JL. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc. 2007;2(2):329–333. doi:10.1038/nprot.2007.3017406593
  • Ascione F, Caserta S, Guido S. The wound healing assay revisited: a transport phenomena approach. Chem Eng Sci. 2017;160:200–209. doi:10.1016/j.ces.2016.11.014
  • Tendo M, Yashiro M, Nakazawa K, et al. A synergic inhibitory-effect of combination with selective cyclooxygenase-2 inhibitor and S-1 on the peritoneal metastasis for scirrhous gastric cancer cells. Cancer Lett. 2006;244(2):247–251. doi:10.1016/j.canlet.2005.12.01916448745
  • Kono M, Watanabe M, Abukawa H, Hasegawa O, Satomi T, Chikazu D. Cyclo-oxygenase-2 expression is associated with vascular endothelial growth factor C expression and lymph node metastasis in oral squamous cell carcinoma. J Oral Maxillofacial Surg. 2013;71(10):1694–1702. doi:10.1016/j.joms.2013.04.015
  • Ozaslan KM, Kilic ID, Guldur IH, Emin M. Ehrlich ascites carcinoma. AfrJ Biotechnol. 2011;10(13):2375–2378.
  • FEd S, Estrela A, Serakides GR, Cassali MG, Dantas G. Ehrlich tumor as model to study artificial hyperthyroidism influence on breast cancer. Pathol Res Pract. 2007;203(1):39–44. doi:10.1016/j.prp.2006.09.00517137730
  • Habib SA, Aggour YA, Taha HA. Downregulation of transforming growth factor-β (TGF-β) and vascular endothelial growth factor (VEGF) in ehrlich ascites carcinoma-bearing mice using stearic acid-grafted carboxymethyl chitosan (SA-CMC). Nat Sci. 2012;4(11):808. doi:10.4236/ns.2012.411108
  • Rivenson A, Schnelle V, Moroson H, Madden R, Herp A. Variable response of spleen to ehrlich’s tumor according to the physical form (ascitic or solid) of the tumor. Experientia. 1981;37(2):195–197. doi:10.1007/bf019632297238756