134
Views
12
CrossRef citations to date
0
Altmetric
Original Research

Immobilization-Enhanced Eradication of Bacterial Biofilms and in situ Antimicrobial Coating of Implant Material Surface – an in vitro Study

ORCID Icon & ORCID Icon
Pages 9351-9360 | Published online: 29 Nov 2019

References

  • Jämsen E, Stogiannidis I, Malmivaara A, Pajamäki J, Puolakka T, Konttinen YT. Outcome of prosthesis exchange for infected knee arthroplasty: the effect of treatment approach. Acta Orthop. 2009;80(1):67–77. doi:10.1080/1745367090280506419234888
  • Konrads C, Franz A, Hoberg M, Rudert M. Similar outcomes of two-stage revisions for infection and one-stage revisions for aseptic revisions of knee endoprostheses. J Knee Surg. 2018;36:48–50.
  • Kunutsor SK, Beswick AD, Whitehouse MR, Wylde V, Blom AW. Debridement, antibiotics and implant retention for periprosthetic joint infections: A systematic review and meta-analysis of treatment outcomes. J Infect. 2018;77(6):479–488. doi:10.1016/j.jinf.2018.08.01730205122
  • Masters JPM, Smith NA, Foguet P, Reed M, Parsons H, Sprowson AP. A systematic review of the evidence for single stage and two stage revision of infected knee replacement. BMC Musculoskelet Disord. 2013;14:222. doi:10.1186/1471-2474-14-22223895421
  • Lu J, Han J, Zhang C, Yang Y, Yao Z. Infection after total knee arthroplasty and its gold standard surgical treatment: spacers used in two-stage revision arthroplasty. Intractable Rare Dis Res. 2017;6(4):256–261. doi:10.5582/irdr.2017.0104929259853
  • Kuiper JW, Willink RT, Moojen DJF, van den Bekerom MP, Colen S. Treatment of acute periprosthetic infections with prosthesis retention: review of current concepts. World J Orthop. 2014;5(5):667–676. doi:10.5312/wjo.v5.i5.66725405096
  • Qasim SN, Swann A, Ashford R. The DAIR (debridement, antibiotics and implant retention) procedure for infected total knee replacement – a literature review. Sicot-J. 2017;3:2. doi:10.1051/sicotj/201603828074774
  • Osmon DR, Berbari EF, Berendt AR, et al. Executive summary: diagnosis and management of prosthetic joint infection: clinical practice guidelines by the infectious diseases society of America. Clin Infect Dis. 2012;56(1):1–10. doi:10.1093/cid/cis966
  • Ottesen CS, Troelsen A, Sandholdt H, Jacobsen S, Husted H, Gromov K. Acceptable success rate in patients with periprosthetic knee joint infection treated with debridement, antibiotics, and implant retention. J Arthroplasty. 2019;34(2):365–368. doi:10.1016/j.arth.2018.09.08830401558
  • Zaruta DA, Qiu B, Liu AY, Ricciardi BF. Indications and guidelines for debridement and implant retention for periprosthetic hip and knee infection. Curr Rev Musculoskelet Med. 2018;11(3):347–356. doi:10.1007/s12178-018-9497-929869769
  • Hall-Stoodley L, Stoodley P. Evolving concepts in biofilm infections. Cell Microbiol. 2009;11(7):1034–1043. doi:10.1111/cmi.2009.11.issue-719374653
  • Lynch AS, Robertson GT. Bacterial and fungal biofilm infections. Annu Rev Med. 2008;59(1):415–428. doi:10.1146/annurev.med.59.110106.13200017937586
  • Mirza YH, Tansey R, Sukeik M, Shaath M, Haddad FS. Biofilm and the role of antibiotics in the treatment of periprosthetic hip and knee joint infections. Open Orthop J. 2016;10(1):636–645. doi:10.2174/187432500161001063628484579
  • Silva M, Tharani R, Schmalzried TP, Results of direct exchange or debridement of the infected total knee arthroplasty. Clin Orthop Relat Res. 2002;404:125–131. doi:10.1097/00003086-200211000-00022
  • Leta TH, Lygre SHL, Schrama JC, et al. Outcome of revision surgery for infection after total knee arthroplasty. JBJS Rev. 2019;7(6):1. doi:10.2106/JBJS.RVW.18.00084
  • Sherrell JC, Fehring TK, Odum S, et al. The Chitranjan Ranawat Award: fate of two-stage reimplantation after failed irrigation and débridement for periprosthetic knee infection. Clin Orthop Relat Res. 2011;469(1):18–25. doi:10.1007/s11999-010-1434-120582495
  • Urish KL, Bullock AG, Kreger AM, et al. A multicenter study of irrigation and debridement in total knee arthroplasty periprosthetic joint infection: treatment failure is high. J Arthroplasty. 2018;33(4):1154–1159. doi:10.1016/j.arth.2017.11.02929221840
  • Gnanadhas DP, Elango M, Janardhanraj S, et al. Successful treatment of biofilm infections using shock waves combined with antibiotic therapy. Sci Rep. 2015;5:1–13. doi:10.1038/srep17440
  • Qi X, Zhao Y, Zhang J, et al. Increased effects of extracorporeal shock waves combined with gentamicin against staphylococcus aureus biofilms in vitro and in vivo. Ultrasound Med Biol. 2016;42(9):2245–2252. doi:10.1016/j.ultrasmedbio.2016.04.01827260244
  • Barra F, Roscetto E, Soriano AA, et al. Photodynamic and antibiotic therapy in combination to fight biofilms and resistant surface bacterial infections. Int J Mol Sci. 2015;16(9):20417–20430. doi:10.3390/ijms16092041726343645
  • Estellés A, Woischnig A-K, Liu K, et al. A high-affinity native human antibody disrupts biofilm from Staphylococcus aureus bacteria and potentiates antibiotic efficacy in a mouse implant infection model. Antimicrob Agents Chemother. 2016;60(4):2292–2301. doi:10.1128/AAC.02588-1526833157
  • García I, Ballesta S, Gilaberte Y, Rezusta A, Pascual Á. Antimicrobial photodynamic activity of hypericin against methicillin-susceptible and resistant Staphylococcus aureus biofilms. Future Microbiol. 2015;10(3):347–356. doi:10.2217/fmb.14.11425812458
  • Mai B, Wang X, Liu Q, et al. The antibacterial effect of sinoporphyrin sodium photodynamic therapy on Staphylococcus aureus planktonic and biofilm cultures. Lasers Surg Med. 2016;48(4):400–408. doi:10.1002/lsm.2246826749227
  • Pérez-Laguna V, Pérez-Artiaga L, Lampaya-Pérez V, et al. Bactericidal effect of photodynamic therapy, alone or in combination with mupirocin or linezolid, on Staphylococcus aureus. Front Microbiol. 2017;8:1–9. doi:10.3389/fmicb.2017.0100228197127
  • Rosa LP, Da Silva FC, Nader SA, Meira GA, Viana MS. Antimicrobial photodynamic inactivation of Staphylococcus aureus biofilms in bone specimens using methylene blue, toluidine blue ortho and malachite green: an in vitro study. Arch Oral Biol. 2015;60(5):675–680. doi:10.1016/j.archoralbio.2015.02.01025757145
  • Xiong YQ, Estellés A, Li L, et al. A human biofilm-disrupting monoclonal antibody potentiates antibiotic efficacy in rodent models of both Staphylococcus aureus and Acinetobacter baumannii infections. Antimicrob Agents Chemother. 2017;61(10):e00904–e00917. doi:10.1128/AAC.00904-1728717038
  • Bradford C. The use of commercially available alpha-amylase compounds to inhibit and remove Staphylococcus aureus biofilms. Open Microbiol J. 2011;5(1):21–31. doi:10.2174/187428580110501002121760865
  • Ceotto-Vigoder H, Marques SLS, Santos INS, et al. Nisin and lysostaphin activity against preformed biofilm of Staphylococcus aureus involved in bovine mastitis. J Appl Microbiol. 2016;121(1):101–114. doi:10.1111/jam.2016.121.issue-126999597
  • Fleming D, Chahin L, Rumbaugh K. Glycoside hydrolases degrade polymicrobial bacterial biofilms in wounds. Antimicrob Agents Chemother. 2017;61(2):e01998–16.27872074
  • Kaplan JB, Lovetri K, Cardona ST, et al. Recombinant human DNase i decreases biofilm and increases antimicrobial susceptibility in staphylococci. J Antibiot. 2012;65(2):73–77. doi:10.1038/ja.2011.11322167157
  • Kokai-Kun JF, Chanturiya T, Mond JJ. Lysostaphin eradicates established Staphylococcus aureus biofilms in jugular vein catheterized mice. J Antimicrob Chemother. 2009;64(1):94–100. doi:10.1093/jac/dkp14519398455
  • Meireles A, Borges A, Giaouris E, Simões M. The current knowledge on the application of anti-biofilm enzymes in the food industry. Food Res Int. 2016;86:140–146. doi:10.1016/j.foodres.2016.06.006
  • Chernousova S, Epple M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed. 2013;52(6):1636–1653. doi:10.1002/anie.v52.6
  • Marambio-Jones C, Hoek EMV. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res. 2010;12(5):1531–1551. doi:10.1007/s11051-010-9900-y
  • Sawai J. Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Methods. 2003;54(2):177–182. doi:10.1016/S0167-7012(03)00037-X12782373
  • VV, Anthony SP. Antimicrobial studies of metal and metal oxide nanoparticles. Surface Chemistry of Nanobiomaterials. 2016:265–300. doi: 10.1016/b978-0-323-42861-3.00009-1
  • Lok C-N, Ho C-M, Chen R, et al. Silver nanoparticles: partial oxidation and antibacterial activities. JBIC J Biol Inorg Chem. 2007;12(4):527–534. doi:10.1007/s00775-007-0208-z17353996
  • Liao Y, Wang Y, Feng X, Wang W, Xu F, Zhang L. Antibacterial surfaces through dopamine functionalization and silver nanoparticle immobilization. Mater Chem Phys. 2010;121(3):534–540. doi:10.1016/j.matchemphys.2010.02.019
  • Ryu JH, Messersmith PB, Lee H. Polydopamine surface chemistry: a decade of discovery. ACS Appl Mater Interfaces. 2018;10(9):7523–7540. doi:10.1021/acsami.7b1986529465221
  • Saidin S, Chevallier P, Abdul Kadir MR, Hermawan H, Mantovani D. Polydopamine as an intermediate layer for silver and hydroxyapatite immobilisation on metallic biomaterials surface. Mater Sci Eng C. 2013;33(8):4715–4724. doi:10.1016/j.msec.2013.07.026
  • Sileika TS, Kim HD, Maniak P, Messersmith PB. Antibacterial performance of polydopamine-modified polymer surfaces containing passive and active components. ACS Appl Mater Interfaces. 2011;3(12):4602–4610. doi:10.1021/am200978h22044029
  • Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science. 2007;318(5849):426–430. doi:10.1126/science.114724117947576
  • Cong Y, Xia T, Zou M, et al. Mussel-inspired polydopamine coating as a versatile platform for synthesizing polystyrene/Ag nanocomposite particles with enhanced antibacterial activities. J Mater Chem B. 2014;2(22):3450–3461. doi:10.1039/C4TB00460D
  • Liu X, Cao J, Li H, et al. Mussel-inspired polydopamine: a biocompatible and ultrastable coating for nanoparticles in vivo. ACS Nano. 2013;7(10):9384–9395. doi:10.1021/nn404117j24010584
  • Qu R, Zhang W, Liu N, et al. Antioil Ag3PO4 nanoparticle/polydopamine/Al2O3 sandwich structure for complex wastewater treatment: dynamic catalysis under natural light. ACS Sustain Chem Eng. 2018;6(6):8019–8028. doi:10.1021/acssuschemeng.8b01469
  • Khan S, Tøndervik A, Sletta H, et al. Overcoming drug resistance with alginate oligosaccharides able to potentiate the action of selected antibiotics. Antimicrob Agents Chemother. 2012;56(10):5134–5141. doi:10.1128/AAC.00525-1222825116
  • Hajipour MJ, Fromm KM, Akbar Ashkarran A, et al. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012;30(10):499–511. doi:10.1016/j.tibtech.2012.06.00422884769
  • Le Ouay B, Stellacci F. Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today. 2015;10(3):339–354. doi:10.1016/j.nantod.2015.04.002
  • Tang S, Zheng J. Antibacterial activity of silver nanoparticles: structural effects. Adv Healthc Mater. 2018;7(13):1–10. doi:10.1002/adhm.v7.13
  • Argenson JN, Arndt M, Babis G, et al. Hip and knee section, treatment, debridement and retention of implant: proceedings of international consensus on orthopedic infections. J Arthroplasty. 2019;34(2,Supplement):S399–S419. doi:10.1016/j.arth.2018.09.02530348550
  • Vilchez F, Martínez-Pastor JC, García-Ramiro S, et al. Efficacy of debridement in hematogenous and early post-surgical prosthetic joint infections. Int J Artif Organs. 2011;34(9):863–869. doi:10.5301/ijao.500002922094567
  • Dietz MJ, Bostian PA, Ernest EP, et al. Rate of surface contamination in the operating suite during revision total joint arthroplasty. Arthroplast Today. 2018;5(1):96–99. doi:10.1016/j.artd.2018.09.00731020031
  • Jahed FS, Hamidi S, Nemati M. Dopamine-capped silver nanoparticles as a colorimetric probe for on-site detection of cyclosporine. ChemistrySelect. 2018;3(47):13323–13328. doi:10.1002/slct.v3.47
  • Waite JH. Adhesion a la moule. Integr Comp Biol. 2002;42(6):1172–1180. doi:10.1093/icb/42.6.117221680402
  • Waite JH, Tanzer ML. Polyphenolic substance of mytilus edulis: novel adhesive containing L-dopa and hydroxyproline. Science. 1981;212(4498):1038–1040. doi:10.1126/science.212.4498.103817779975
  • Yoosaf K, Ipe BI, Suresh CH, Thomas KG. In situ synthesis of metal nanoparticles and selective naked-eye detection of lead ions from aqueous media. J Phys Chem C. 2007;111(34):12839–12847. doi:10.1021/jp073923q
  • Chang T-L, Yu X, Liang JF. Polydopamine-enabled surface coating with nano-metals. Surf Coat Technol. 2018;337:389–395. doi:10.1016/j.surfcoat.2018.01.009