316
Views
44
CrossRef citations to date
0
Altmetric
Review

Toxicity of Carbon Nanotubes as Anti-Tumor Drug Carriers

, , , , , , , & show all
Pages 10179-10194 | Published online: 31 Dec 2019

References

  • Li H, Shi L, Wei J, et al. Cellular uptake and anticancer activity of salvianolic acid B phospholipid complex loaded nanoparticles in head and neck cancer and precancer cells. Colloids Surf B Biointerfaces. 2016;147:65–72. doi:10.1016/j.colsurfb.2016.07.05327490455
  • Shanmugam MK, Warrier S, Kumar AP, et al. Potential role of natural compounds as anti-angiogenic agents in cancer. Curr Vasc Pharmacol. 2017;15:503–519. doi:10.2174/157016111566617071309431928707601
  • Yallapu MM, Gupta BK, Jaggi M, et al. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci. 2010;351:19–29. doi:10.1016/j.jcis.2010.05.02220627257
  • Zamorano JL, Lancellotti P, Rodriguez Munoz D, et al. 2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC committee for practice guidelines: the task force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016;37:2768–2801. doi:10.1093/eurheartj/ehw21127567406
  • Yitzhak R, Elman NM. Carbon nanotubes in drug delivery: focus on infectious diseases. Expert Opin Drug Del. 2009;6:517–530. doi:10.1517/17425240902865579
  • Eroglu MS, Oner ET, Mutlu EC, et al. Sugar based biopolymers in nanomedicine; new emerging era for cancer imaging and therapy. Curr Top Med Chem. 2016;17:1507–1520. doi:10.2174/1568026616666161222101703
  • Jain KK. Role of nanodiagnostics in personalized cancer therapy. Clin Lab Med. 2012;32:15–31. doi:10.1016/j.cll.2011.10.00122340841
  • Nagesetti A, Srinivasan S, McGoron AJ. Polyethylene glycol modified ORMOSIL theranostic nanoparticles for triggered doxorubicin release and deep drug delivery into ovarian cancer spheroids. J Photochem Photobiol B. 2017;174:209–216. doi:10.1016/j.jphotobiol.2017.07.02028800509
  • Watermann A, Brieger J. Mesoporous silica nanoparticles as drug delivery vehicles in cancer. Nanomaterials (Basel). 2017;7:189.
  • Jain KK. Advances in the field of nanooncology. BMC Med. 2010;8:83. doi:10.1186/1741-7015-8-8321144040
  • Liu Z, Robinson JT, Tabakman SM, et al. Carbon materials for drug delivery & cancer therapy. Mater Today. 2011;14:316–323. doi:10.1016/S1369-7021(11)70161-4
  • Gately RD, In Het Panhuis M. Filling of carbon nanotubes and nanofibres. Beilstein J Nanotechnol. 2015;6:508–516. doi:10.3762/bjnano.6.5325821693
  • Jin H, Heller DA, Sharma R, et al. Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles. ACS Nano. 2009;3:149–158. doi:10.1021/nn800532m19206261
  • Lacerda L, Bianco A, Prato M, et al. Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv Drug Deliv Rev. 2006;58:1460–1470. doi:10.1016/j.addr.2006.09.01517113677
  • Lamprecht C, Plochberger B, Ruprecht V, et al. A single-molecule approach to explore binding, uptake and transport of cancer cell targeting nanotubes. Nanotechnology. 2014;25:125704. doi:10.1088/0957-4484/25/12/12570424577143
  • Lamprecht C, Gierlinger N, Heister E, et al. Mapping the intracellular distribution of carbon nanotubes after targeted delivery to carcinoma cells using confocal Raman imaging as a label-free technique. J Phys Condens Matter. 2012;24:164206. doi:10.1088/0953-8984/24/16/16420622466107
  • Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–58. doi:10.1038/354056a0
  • Ezzati Nazhad Dolatabadi J, Omidi Y, Losic D. Carbon nanotubes as an advanced drug and gene delivery nanosystem. Curr Nanosci. 2011;7:297–314. doi:10.2174/157341311795542444
  • Liu X, Tao H, Yang K, et al. Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors. Biomaterials. 2011;32:144–151. doi:10.1016/j.biomaterials.2010.08.09620888630
  • Wang L, Shi J, Jia X, et al. NIR-/pH-responsive drug delivery of functionalized single-walled carbon nanotubes for potential application in cancer chemo-photothermal therapy. Pharm Res. 2013;30:2757–2771. doi:10.1007/s11095-013-1095-323765399
  • Zhang B, Wang H, Shen S, et al. Fibrin-targeting peptide CREKA-conjugated multi-walled carbon nanotubes for self-amplified photothermal therapy of tumor. Biomaterials. 2016;79:46–55. doi:10.1016/j.biomaterials.2015.11.06126695116
  • Marches R, Chakravarty P, Musselman IH, et al. Specific thermal ablation of tumor cells using single-walled carbon nanotubes targeted by covalently-coupled monoclonal antibodies. Int J Cancer. 2009;125:2970–2977. doi:10.1002/(ISSN)1097-021519536775
  • Jeyamohan P, Hasumura T, Nagaoka Y, et al. Accelerated killing of cancer cells using a multifunctional single-walled carbon nanotube-based system for targeted drug delivery in combination with photothermal therapy. Int J Nanomed. 2013;8:2653–2667.
  • Sobhani Z, Behnam MA, Emami F, et al. Photothermal therapy of melanoma tumor using multiwalled carbon nanotubes. Int J Nanomed. 2017;12:4509–4517. doi:10.2147/IJN
  • Roy E, Patra S, Madhuri R, et al. Carbon dot/TAT peptide co-conjugated bubble nanoliposome for multicolor cell imaging, nuclear-targeted delivery, and chemo/photothermal synergistic therapy. Chem Eng J. 2017;312:144–157. doi:10.1016/j.cej.2016.11.122
  • Sheikhpour M, Golbabaie A, Kasaeian A. Carbon nanotubes: a review of novel strategies for cancer diagnosis and treatment. Mater Sci Eng C Mater Biol Appl. 2017;76:1289–1304. doi:10.1016/j.msec.2017.02.13228482496
  • Chakrabarti M, Kiseleva R, Vertegel A, et al. Carbon nanomaterials for drug delivery and cancer therapy. J Nanosci Nanotechno. 2015;15:5501–5511. doi:10.1166/jnn.2015.10614
  • Caoduro C, Hervouet E, Girard-Thernier C, et al. Carbon nanotubes as gene carriers: focus on internalization pathways related to functionalization and properties. Acta Biomater. 2017;49:36–44. doi:10.1016/j.actbio.2016.11.01327826000
  • Battigelli A, Menard-Moyon C, Da Ros T, et al. Endowing carbon nanotubes with biological and biomedical properties by chemical modifications. Adv Drug Deliv Rev. 2013;65:1899–1920. doi:10.1016/j.addr.2013.07.00623856410
  • Elhissi AM, Ahmed W, Hassan IU, et al. Carbon nanotubes in cancer therapy and drug delivery. J Drug Deliv. 2012;2012:837327. doi:10.1155/2012/83732722028974
  • Kushwaha SKS, Ghoshal S, Rai AK, et al. Carbon nanotubes as a novel drug delivery system for anticancer therapy: a review. Braz J Pharm Sci. 2013;49:629–643. doi:10.1590/S1984-82502013000400002
  • Wan L, Jiao J, Cui Y, et al. Hyaluronic acid modified mesoporous carbon nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells. Nanotechnology. 2016;27:135102. doi:10.1088/0957-4484/27/13/13510226901756
  • Karimi M, Solati N, Ghasemi A, et al. Carbon nanotubes part II: a remarkable carrier for drug and gene delivery. Expert Opin Drug Deliv. 2015;12:1089–1105. doi:10.1517/17425247.2015.100430925613837
  • Augustine S, Singh J, Srivastava M, et al. Recent advances in carbon based nanosystems for cancer theranostics. Biomater Sci. 2017;5:901–952. doi:10.1039/C7BM00008A28401206
  • Chen W, Zheng X, Li S, et al. One-pot synthesis of FePt/CNTs nanocomposites for efficient cellular imaging and cancer therapy. J Nanopart Res. 2015;17:444.
  • Saeednia L, Yao L, Cluff K, et al. Sustained releasing of methotrexate from injectable and thermosensitive chitosan-carbon nanotube hybrid hydrogels effectively controls tumor cell growth. ACS Omega. 2019;4:4040–4048. doi:10.1021/acsomega.8b0321230842986
  • Palmer BC, Phelan-Dickenson SJ, DeLouise LA. Multi-walled carbon nanotube oxidation dependent keratinocyte cytotoxicity and skin inflammation. Part Fibre Toxicol. 2019;16:3. doi:10.1186/s12989-018-0285-x30621720
  • Kasai T, Umeda Y, Ohnishi M, et al. Thirteen-week study of toxicity of fiber-like multi-walled carbon nanotubes with whole-body inhalation exposure in rats. Nanotoxicology. 2015;9:413–422. doi:10.3109/17435390.2014.93390325030099
  • Emerce E, Ghosh M, Oner D, et al. Carbon nanotube- and asbestos-induced DNA and RNA methylation changes in bronchial epithelial cells. Chem Res Toxicol. 2019;32:850–860. doi:10.1021/acs.chemrestox.8b0040630990028
  • Chernova T, Murphy FA, Galavotti S, et al. Long-fiber carbon nanotubes replicate asbestos-induced mesothelioma with disruption of the tumor suppressor gene Cdkn2a (Ink4a/Arf). Curr Biol. 2017;27:3302–3314 e3306. doi:10.1016/j.cub.2017.09.00729112861
  • Roda E, Coccini T, Barni S, et al. Comparative pulmonary toxicity assessment of pristine and functionalized multi-walled carbon nanotubes intratracheally instilled in rats. Toxicol Lett. 2010;196:S277. doi:10.1016/j.toxlet.2010.03.1137
  • Morimoto Y, Hirohashi M, Ogami A, et al. Pulmonary toxicity of well-dispersed multi-wall carbon nanotubes following inhalation and intratracheal instillation. Nanotoxicology. 2012;6:587–599. doi:10.3109/17435390.2011.59491221714591
  • Shen CX, Zhang QF, Li J, et al. Induction of programmed cell death in arabidopsis and rice by single-wall carbon nanotubes. Am J Bot. 2010;97:1602–1609. doi:10.3732/ajb.100007321616795
  • Oberdorster G. Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med. 2010;267:89–105. doi:10.1111/j.1365-2796.2009.02187.x20059646
  • Thurnherr T, Brandenberger C, Fischer K, et al. A comparison of acute and long-term effects of industrial multiwalled carbon nanotubes on human lung and immune cells in vitro. Toxicol Lett. 2011;200:176–186. doi:10.1016/j.toxlet.2010.11.01221112381
  • Osmond-McLeod MJ, Poland CA, Murphy F, et al. Durability and inflammogenic impact of carbon nanotubes compared with asbestos fibres. Part Fibre Toxicol. 2011;8:15.21569450
  • Ursini CL, Maiello R, Ciervo A, et al. Evaluation of uptake, cytotoxicity and inflammatory effects in respiratory cells exposed to pristine and -OH and -COOH functionalized multi-wall carbon nanotubes. J Appl Toxicol. 2016;36:394–403. doi:10.1002/jat.v36.326370214
  • Santos T, Fang X, Chen MT, et al. Sequential administration of carbon nanotubes and near-infrared radiation for the treatment of gliomas. Front Oncol. 2014;4:180. doi:10.3389/fonc.2014.0018025077069
  • Wang L, Shi J, Zhang H, et al. Synergistic anticancer effect of RNAi and photothermal therapy mediated by functionalized single-walled carbon nanotubes. Biomaterials. 2013;34:262–274. doi:10.1016/j.biomaterials.2012.09.03723046752
  • Jabr-Milane LS, van Vlerken LE, Yadav S, et al. Multi-functional nanocarriers to overcome tumor drug resistance. Cancer Treat Rev. 2008;34:592–602. doi:10.1016/j.ctrv.2008.04.00318538481
  • Meng L, Zhang X, Lu Q, et al. Single walled carbon nanotubes as drug delivery vehicles: targeting doxorubicin to tumors. Biomaterials. 2012;33:1689–1698. doi:10.1016/j.biomaterials.2011.11.00422137127
  • Pacurari M, Yin XJ, Ding M, et al. Oxidative and molecular interactions of multi-wall carbon nanotubes (MWCNT) in normal and malignant human mesothelial cells. Nanotoxicology. 2009;2:155–170. doi:10.1080/17435390802318356
  • Hong SY, Tobias G, Al-Jamal KT, et al. Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging. Nat Mater. 2010;9:485–490. doi:10.1038/nmat276620473287
  • Ménard-Moyon, Cécilia, Venturelli E, Fabbro C, et al. The alluring potential of functionalized carbon nanotubes in drug discovery. Expert Opin Drug Dis. 2010;7:691–707. doi:10.1517/17460441.2010.490552
  • Zhang W, Zhang Z, Zhang Y. The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Res Lett. 2011;6:555. doi:10.1186/1556-276X-6-55521995320
  • Lia Z, ALBd B, Soaresc DCF, et al. Functionalized single-walled carbon nanotubes: cellular uptake, biodistribution and applications in drug delivery. Int J Pharm. 2017;524:41–54. doi:10.1016/j.ijpharm.2017.03.01728300630
  • Kayat J, Gajbhiye V, Tekade RK, et al. Pulmonary toxicity of carbon nanotubes: a systematic report. Nanomedicine. 2011;7:40–49. doi:10.1016/j.nano.2010.06.00820620235
  • Shams H, Holt BD, Mahboobi SH, et al. Actin reorganization through dynamic interactions with single-wall carbon nanotubes. ACS Nano. 2014;8:188–197. doi:10.1021/nn402865e24351114
  • Al-Jamal KT, Nerl H, Müller KH, et al. Cellular uptake mechanisms of functionalised multi-walled carbon nanotubes by 3D electron tomography imaging. Nanoscale. 2011;3:2627–2635. doi:10.1039/c1nr10080g21603701
  • Kostarelos K, Lacerda L, Pastorin G, et al. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol. 2007;2:108–113. doi:10.1038/nnano.2006.20918654229
  • Dan E, Walid D, Cécilia MM, et al. Carbon nanotube degradation in macrophages: live nanoscale monitoring and understanding of biological pathway. ACS Nano. 2015;9:10113–10124. doi:10.1021/acsnano.5b0370826331631
  • Kang B, Chang S, Dai Y, et al. Cell response to carbon nanotubes: size-dependent intracellular uptake mechanism and subcellular fate. Small. 2010;6:2362–2366. doi:10.1002/smll.20100126020878638
  • Kang B, Dai Y, Chang S, et al. Cell response to carbon nanotubes: size-dependent intracellular uptake mechanism and subcellular fate. Small. 2010;6:2362–2366. doi:10.1002/smll.20100126020878638
  • Pantarotto D, Briand J-P, Prato M, et al. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun. 2003;10:16–17.
  • Raffa V, Ciofani G, Vittorio O, et al. Physicochemical properties affecting cellular uptake of carbon nanotubes. Nanomedicine. 2010;5:89–97. doi:10.2217/nnm.09.9520025467
  • Lacerda L, Russier J, Pastorin G, et al. Translocation mechanisms of chemically functionalised carbon nanotubes across plasma membranes. Biomaterials. 2012;33:3334–3343. doi:10.1016/j.biomaterials.2012.01.02422289266
  • Serag MF, Kaji N, Okamoto CGY, et al. Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano. 2011;5:493–499. doi:10.1021/nn102344t21141871
  • Caoduro C, Kacem R, Boukari K, et al. Carbon nanotube – protamine hybrid: evaluation of DNA cell penetration. Carbon. 2016;96:742–752. doi:10.1016/j.carbon.2015.09.098
  • Yaron PN, Holt BD, Short PA, et al. Single wall carbon nanotubes enter cells by endocytosis and not membrane penetration. J Nanobiotechnol. 2011;9:45. doi:10.1186/1477-3155-9-45
  • HalamodaKenzaoui B, Ceridono M, Urbán P, et al. The agglomeration state of nanoparticles can influence the mechanism of their cellular internalisation. J Nanobiotechnol. 2017;15:48. doi:10.1186/s12951-017-0281-6
  • Mousavi SZ, Nademi Y, Amjad-Iranagh S. et al. Carbon nanotube-encapsulated drug penetration through the cell membrane: an investigation based on steered molecular dynamics simulation. J Membrane Biol;2013 697–704. doi:10.1007/s00232-013-9587-y23979172
  • Maruyama K, Haniu H, Saito N, et al. Endocytosis of multiwalled carbon nanotubes in bronchial epithelial and mesothelial cells. Biomed Res Int. 2015;2015:793186. doi:10.1155/2015/79318626090445
  • Kam NWS, Jessop TC, Wender PA, et al. Nanotube molecular transporters? Internalization of carbon nanotube? Protein conjugates into mammalian cells. J Am Chem Soc. 2004;126:6850–6851. doi:10.1021/ja048605915174838
  • Zhang X, Meng L, Wang X, et al. Preparation and cellular uptake of pH-dependent fluorescent single-wall carbon nanotubes. Chemistry. 2010;16:556–561. doi:10.1002/chem.20090116819894228
  • Kotchey GP, Zhao Y, Kagan VE, et al. Peroxidase-mediated biodegradation of carbon nanotubes in vitro and in vivo. Adv Drug Deliv Rev. 2013;65:1921–1932. doi:10.1016/j.addr.2013.07.00723856412
  • Ding Y, Tian R, Yang Z, et al. NADPH oxidase-dependent degradation of single-walled carbon nanotubes in macrophages. J Mater Sci Mater Med. 2017;28:7. doi:10.1007/s10856-016-5817-z27885574
  • Kagan VE, Konduru NV, Feng W, et al. Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat Nanotechnol. 2010;5:354–359. doi:10.1038/nnano.2010.4420364135
  • Hou J, Wan B, Yang Y, et al. Biodegradation of single-walled carbon nanotubes in macrophages through respiratory burst modulation. Int J Mol Sci. 2016;17:409. doi:10.3390/ijms1703040927011169
  • Bussy C, Hadad C, Prato M, et al. Intracellular degradation of chemically functionalized carbon nanotubes using a long-term primary microglial culture model. Nanoscale. 2016;8:590–601. doi:10.1039/C5NR06625E26647092
  • Ding Y, Tian R, Yang Z, et al. Binding of human IgG to single-walled carbon nanotubes accelerated myeloperoxidase-mediated degradation in activated neutrophils. Biophys Chem. 2016;218:36–41.27614147
  • Xanat D, HM M, SF A, et al. Slow biotransformation of carbon nanotubes by horseradish peroxidase. Environ Sci Technol. 2014;48:4826–4834. doi:10.1021/es405327924678632
  • Allen BL, Kichambare PD, Gou P, et al. Biodegradation of single-walled carbon nanotubes through enzymatic catalysis. Nano Lett. 2008;8:3899–3903. doi:10.1021/nl802315h18954125
  • Liu Y, Zhao YL, Sun BY, et al. Understanding the toxicity of carbon nanotubes. Acc Chem Res. 2013;46:702–713. doi:10.1021/ar300028m22999420
  • Ding Y, Tian R, Yang Z, et al. Effects of serum albumin on the degradation and cytotoxicity of single-walled carbon nanotubes. Biophys Chem. 2017;222:1–6. doi:10.1016/j.bpc.2016.12.00228042968
  • Lu N, Sui Y, Ding Y, et al. Fibrinogen binding-dependent cytotoxicity and degradation of single-walled carbon nanotubes. J Mater Sci Mater Med. 2018;29:115. doi:10.1007/s10856-018-6123-830019251
  • Zhang T, Tang M, Yao Y, et al. MWCNT interactions with protein: surface-induced changes in protein adsorption and the impact of protein corona on cellular uptake and cytotoxicity. Int J Nanomedicine. 2019;14:993–1009. doi:10.2147/IJN.S19168930799918
  • Sadr Karimi S, Pante N. Carbon nanotubes as molecular transporters to study a new mechanism for molecular entry into the cell nucleus using actin polymerization force. PLoS One. 2019;14:e0221562. doi:10.1371/journal.pone.022156231437229
  • Shvedova AA, Pietroiusti A, Fadeel B, et al. Mechanisms of carbon nanotube-induced toxicity: focus on oxidative stress. Toxicol Appl Pharmacol. 2012;261:121–133. doi:10.1016/j.taap.2012.03.02322513272
  • Ying L, Yuliang Z, Baoyun S, et al. Understanding the toxicity of carbon nanotubes. Acc Chem Res. 2013;46:702–713. doi:10.1021/ar300028m22999420
  • Chestkov IV, Jestkova EM, Ershova ES, et al. ROS-induced DNA damage associates with abundance of mitochondrial DNA in white blood cells of the untreated schizophrenic patients. Oxid Med Cell Longev. 2018;2018:8587475. doi:10.1155/2018/858747529682166
  • Luceri C, Bigagli E, Femia AP, et al. Aging related changes in circulating reactive oxygen species (ROS) and protein carbonyls are indicative of liver oxidative injury. Toxicol Rep. 2018;5:141–145. doi:10.1016/j.toxrep.2017.12.01729854585
  • Dey U, Ghosh A, Abbas S, et al. Cell damage and mitigation in Swiss albino mice: experiment and modelling. Quantitative Biology 2019;1904:10394.
  • Dong J, Ma Q. Advances in mechanisms and signaling pathways of carbon nanotube toxicity. Nanotoxicology. 2015;9:658–676. doi:10.3109/17435390.2015.100918725676622
  • Hiraku Y, Guo F, Ma N, et al. Multi-walled carbon nanotube induces nitrative DNA damage in human lung epithelial cells via HMGB1-RAGE interaction and toll-like receptor 9 activation. Part Fibre Toxicol. 2016;13:16. doi:10.1186/s12989-016-0127-727026438
  • de Carvalho Lima EN, Piqueira JRC, Maria DA. Advances in carbon nanotubes for malignant melanoma: a chance for treatment. Mol Diagn Ther. 2018;22:703–715. doi:10.1007/s40291-018-0363-730368765
  • Chen M, Sun Y, Liang J, et al. Understanding the influence of carbon nanomaterials on microbial communities. Environ Int. 2019;126:690–698. doi:10.1016/j.envint.2019.02.00530875562
  • Huaux F, d’Ursel de Bousies V, Parent MA, et al. Mesothelioma response to carbon nanotubes is associated with an early and selective accumulation of immunosuppressive monocytic cells. Part Fibre Toxicol. 2016;13:46. doi:10.1186/s12989-016-0158-027549627
  • Shvedova AA, Tkach AV, Kisin ER, et al. Carbon nanotubes enhance metastatic growth of lung carcinoma via up-regulation of myeloid-derived suppressor cells. Small. 2013;9:1691–1695. doi:10.1002/smll.20120147022996965
  • Shvedova AA, Kisin ER, Yanamala N, et al. MDSC and TGFbeta are required for facilitation of tumor growth in the lungs of mice exposed to carbon nanotubes. Cancer Res. 2015;75:1615–1623. doi:10.1158/0008-5472.CAN-14-237625744719
  • Dong X, Liu L, Zhu D, et al. Transactivator of transcription (TAT) peptide-chitosan functionalized multiwalled carbon nanotubes as a potential drug delivery vehicle for cancer therapy. Int J Nanomedicine. 2015;10:3829–3840. doi:10.2147/IJN.S8176226082633
  • Liu X, Zhang Y, Li J, et al. Cognitive deficits and decreased locomotor activity induced by single-walled carbon nanotubes and neuroprotective effects of ascorbic acid. Int J Nanomed. 2014;9:823–839.
  • Campagnolo L, Massimiani M, Palmieri G, et al. Biodistribution and toxicity of pegylated single wall carbon nanotubes in pregnant mice. Part Fibre Toxicol. 2013;10:21. doi:10.1186/1743-8977-10-2123742083
  • Simon A, Maletz SX, Hollert H, et al. Effects of multiwalled carbon nanotubes and triclocarban on several eukaryotic cell lines: elucidating cytotoxicity, endocrine disruption, and reactive oxygen species generation. Nanoscale Res Lett. 2014;9:396–410. doi:10.1186/1556-276X-9-39625170332
  • Jiang Y, Zhang H, Wang Y, et al. Modulation of apoptotic pathways of macrophages by surface-functionalized multi-walled carbon nanotubes. PLoS One. 2013;8:e65756. doi:10.1371/journal.pone.006575623755279
  • TSUJI T, USUKURA J. Assessment on a biological toxicity caused by single-walled carbon nanotubes. Nano Biomed. 2012;4:125–132.
  • Adedara IA, Anao OO, Forcados GE, et al. Low doses of multi-walled carbon nanotubes elicit hepatotoxicity in rats with markers of oxidative stress and induction of pro-inflammatory cytokines. Biochem Biophys Res Commun. 2018;503:3167–3173. doi:10.1016/j.bbrc.2018.08.11230149914
  • Mutlu GM, Budinger GR, Green AA, et al. Biocompatible nanoscale dispersion of single-walled carbon nanotubes minimizes in vivo pulmonary toxicity. Nano Lett. 2010;10:1664–1670. doi:10.1021/nl904248320377197
  • Mostovenko E, Young T, Muldoon PP, et al. Nanoparticle exposure driven circulating bioactive peptidome causes systemic inflammation and vascular dysfunction. Part Fibre Toxicol. 2019;16:20. doi:10.1186/s12989-019-0304-631142334
  • Liu Z, Cai W, He L, et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol. 2007;2:47–52. doi:10.1038/nnano.2006.17018654207
  • Deng X, Yang S, Nie H, et al. A generally adoptable radiotracing method for tracking carbon nanotubes in animals. Nanotechnol. 2008;19:075101. doi:10.1088/0957-4484/19/7/075101
  • Awasthi KK, John PJ, Awasthi A, et al. Multi walled carbon nano tubes induced hepatotoxicity in Swiss albino mice. Micron. 2013;44:359–364. doi:10.1016/j.micron.2012.08.00823000350
  • Ji Z, Zhang D, Li L, et al. The hepatotoxicity of multi-walled carbon nanotubes in mice. Nanotechnol. 2009;20:445101. doi:10.1088/0957-4484/20/44/445101
  • Patlolla AK, Berry A, Tchounwou PB. Study of hepatotoxicity and oxidative stress in male Swiss-Webster mice exposed to functionalized multi-walled carbon nanotubes. Mol Cell Biochem. 2011;358:189–199. doi:10.1007/s11010-011-0934-y21725842
  • Otsuka K, Yamada K, Taquahashi Y, et al. Long-term polarization of alveolar macrophages to a profibrotic phenotype after inhalation exposure to multi-wall carbon nanotubes. PLoS One. 2018;13:e0205702. doi:10.1371/journal.pone.020570230372450
  • Jacobsen NR, Møller P, Clausen PA, et al. Biodistribution of carbon nanotubes in animal models. Basic Clin Pharmacol Toxicol. 2016;121(Suppl 3):30. doi:10.1111/bcpt.12705
  • Puisney C, Baeza-Squiban A, Boland S. Mechanisms of uptake and translocation of nanomaterials in the lung. Adv Exp Med Biol. 2018;1048:21–36.29453530
  • Poulsen SS, Jackson P, Kling K, et al. Multi-walled carbon nanotube physicochemical properties predict pulmonary inflammation and genotoxicity. Nanotoxicology. 2016;10:1263–1275. doi:10.1080/17435390.2016.120235127323647
  • Duke KS, Bonner JC. Mechanisms of carbon nanotube-induced pulmonary fibrosis: a physicochemical characteristic perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018;10:e1498. doi:10.1002/wnan.2018.10.issue-328984415
  • Ema M, Gamo M, Honda K. A review of toxicity studies of single-walled carbon nanotubes in laboratory animals. Regul Toxicol Pharmacol. 2016;74:42–63. doi:10.1016/j.yrtph.2015.11.01526619783
  • Francis AP, Devasena T. Toxicity of carbon nanotubes: a review. Toxicol Ind Health. 2018;34:200–210. doi:10.1177/074823371774747229506458
  • Chou CC, Hsiao HY, Hong QS, et al. Single-walled carbon nanotubes can induce pulmonary injury in mouse model. Nano Lett. 2008;8:437–445. doi:10.1021/nl072363418225938
  • Lam CW, James JT, McCluskey R, et al. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci. 2004;77:126–134. doi:10.1093/toxsci/kfg24314514958
  • Qin Y, Li S, Zhao G, et al. Long-term intravenous administration of carboxylated single-walled carbon nanotubes induces persistent accumulation in the lungs and pulmonary fibrosis via the nuclear factor-kappa B pathway. Int J Nanomed. 2017;12:263–277. doi:10.2147/IJN.S123839
  • Johnson BB, Santare MH, Novotny JE, et al. Wear behavior of carbon nanotube/high density polyethylene composites. Mech Mater. 2009;41:1108–1115. doi:10.1016/j.mechmat.2009.04.00320161101
  • Erdely A, Hulderman T, Salmen R, et al. Cross-talk between lung and systemic circulation during carbon nanotube respiratory exposure. Potential biomarkers. Nano Lett. 2009;9:36–43. doi:10.1021/nl801828z19049393
  • Ge C, Meng L, Xu L, et al. Acute pulmonary and moderate cardiovascular responses of spontaneously hypertensive rats after exposure to single-wall carbon nanotubes. Nanotoxicol. 2012;6:526–542. doi:10.3109/17435390.2011.587905
  • Chen R, Zhang L, Ge C, et al. Subchronic toxicity and cardiovascular responses in spontaneously hypertensive rats after exposure to multiwalled carbon nanotubes by intratracheal instillation. Chem Res Toxicol. 2015;28:440–450. doi:10.1021/tx500400325580880
  • Suzuki Y, Tada-Oikawa S, Hayashi Y, et al. Single- and double-walled carbon nanotubes enhance atherosclerogenesis by promoting monocyte adhesion to endothelial cells and endothelial progenitor cell dysfunction. Part Fibre Toxicol. 2016;13:54. doi:10.1186/s12989-016-0166-027737702
  • Guo YY, Zhang J, Zheng YF, et al. Cytotoxic and genotoxic effects of multi-wall carbon nanotubes on human umbilical vein endothelial cells in vitro. Mutat Res. 2011;721:184–191. doi:10.1016/j.mrgentox.2011.01.01421296185
  • Zheng W, McKinney W, Kashon M, et al. The influence of inhaled multi-walled carbon nanotubes on the autonomic nervous system. Part Fibre Toxicol. 2016;13:8. doi:10.1186/s12989-016-0119-726864021
  • Aragon MJ, Topper L, Tyler CR, et al. Serum-borne bioactivity caused by pulmonary multiwalled carbon nanotubes induces neuroinflammation via blood-brain barrier impairment. Proc Natl Acad Sci U S A. 2017;114:E1968–E1976. doi:10.1073/pnas.161607011428223486
  • Gholamine B, Karimi I, Salimi A, et al. Neurobehavioral toxicity of carbon nanotubes in mice. Toxicol Ind Health. 2017;33:340–350. doi:10.1177/074823371664438127230352
  • Larner SF, Wang J, Goodman J, et al. In vitro neurotoxicity resulting from exposure of cultured neural cells to several types of nanoparticles. J Cell Death. 2017;10:1179670717694523. doi:10.1177/117967071769452328469474
  • Chen H, Zheng X, Nicholas J, et al. Single-walled carbon nanotubes modulate pulmonary immune responses and increase pandemic influenza a virus titers in mice. Virol J. 2017;14:242. doi:10.1186/s12985-017-0909-z29273069
  • Park EJ, Choi J, Kim JH, et al. Subchronic immunotoxicity and screening of reproductive toxicity and developmental immunotoxicity following single instillation of HIPCO-single-walled carbon nanotubes: purity-based comparison. Nanotoxicology. 2016;10:1188–1202. doi:10.1080/17435390.2016.120234827310831
  • Lee S, Khang D, Kim S-H. High dispersity of carbon nanotubes diminishes immunotoxicity in spleen. Int J Nanomed. 2015;10:2697–2710.
  • Bottini M, Bruckner S, Nika K, et al. Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett. 2006;160:121–126. doi:10.1016/j.toxlet.2005.06.02016125885
  • Pietroiusti A, Massimiani M, Fenoglio I, et al. Low doses of pristine and oxidized single-wall carbon nanotubes affect mammalian embryonic development. ACS Nano. 2011;5:4624–4633. doi:10.1021/nn200372g21615177
  • Qi W, Bi J, Zhang X, et al. Damaging effects of multi-walled carbon nanotubes on pregnant mice with different pregnancy times. Sci Rep. 2014;4:4352. doi:10.1038/srep0435224619025
  • Cheng J, Cheng SH. Influence of carbon nanotube length on toxicity to zebrafish embryos. Int J Nanomed. 2012;7:3731–3739. doi:10.2147/IJN
  • Huang X, Zhang F, Sun X, et al. The genotype-dependent influence of functionalized multiwalled carbon nanotubes on fetal development. Biomaterials. 2014;35:856–865. doi:10.1016/j.biomaterials.2013.10.02724344357
  • Zhu B, Song Z, Jian L, et al. Developmental toxicity, bioaccumulation and distribution of oxidized single walled carbon nanotubes in Artemia salina. Toxicol Res (Camb). 2018;7:897–906.30310666
  • Bai Y, Zhang Y, Zhang J, et al. Repeated administrations of carbon nanotubes in male mice cause reversible testis damage without affecting fertility. Nat Nanotechnol. 2010;5:683–689. doi:10.1038/nnano.2010.15320693989
  • Lindberg HK, Falck GC, Singh R, et al. Genotoxicity of short single-wall and multi-wall carbon nanotubes in human bronchial epithelial and mesothelial cells in vitro. Toxicology. 2013;313:24–37. doi:10.1016/j.tox.2012.12.00823266321
  • Zhang D, Deng X, Ji Z, et al. Long-term hepatotoxicity of polyethylene-glycol functionalized multi-walled carbon nanotubes in mice. Nanotechnology. 2010;21:175101. doi:10.1088/0957-4484/21/17/17510120357413
  • Perez-Luna V, Moreno-Aguilar C, Arauz-Lara JL, et al. Interactions of functionalized multi-wall carbon nanotubes with giant phospholipid vesicles as model cellular membrane system. Sci Rep. 2018;8:17998. doi:10.1038/s41598-018-36531-930573758
  • Adenuga AA, Truong L, Tanguay RL, et al. Preparation of water soluble carbon nanotubes and assessment of their biological activity in embryonic zebrafish. Int J Biomed Nanosci Nanotechnol. 2013;3:38–51. doi:10.1504/IJBNN.2013.05451425750663
  • Au - Lin J, Au - Hu Y, Au - Zhao -J-J. Repression of multiple myeloma cell growth in vivo by Single-wall Carbon Nanotube (SWCNT)-delivered MALAT1 antisense oligos. JoVE. 2018;13:e58598.
  • Suo N, Wang M, Jin Y, et al. Magnetic multiwalled carbon nanotubes with controlled release of epirubicin: an intravesical instillation system for bladder cancer. Int J Nanomedicine. 2019;14:1241–1254. doi:10.2147/IJN.S18968830863057
  • Lay CL, Liu HQ, Tan HR, et al. Delivery of paclitaxel by physically loading onto poly(ethylene glycol) (PEG)-graft-carbon nanotubes for potent cancer therapeutics. Nanotechnology. 2010;21:065101. doi:10.1088/0957-4484/21/6/06510120057024
  • Zhu Y, Li W, Li Q, et al. Effects of serum proteins on intracellular uptake and cytotoxicity of carbon nanoparticles. Carbon. 2009;47:1351–1358. doi:10.1016/j.carbon.2009.01.026
  • Schipper ML, Nakayama-Ratchford N, Davis CR, et al. A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat Nanotechnol. 2008;3:216–221. doi:10.1038/nnano.2008.6818654506
  • Costa PM, Bourgognon M, Wang JT, et al. Functionalised carbon nanotubes: from intracellular uptake and cell-related toxicity to systemic brain delivery. J Control Release. 2016;241:200–219. doi:10.1016/j.jconrel.2016.09.03327693751
  • Dong X, Sun Z, Wang X, et al. An innovative MWCNTs/DOX/TC nanosystem for chemo-photothermal combination therapy of cancer. Nanomedicine. 2017;13:2271–2280. doi:10.1016/j.nano.2017.07.00228712919
  • Pardo J, Peng Z, Leblanc RM. Cancer targeting and drug delivery using carbon-based quantum dots and nanotubes. Molecules. 2018;23:378.
  • Huang H, Yuan Q, Shah JS, et al. A new family of folate-decorated and carbon nanotube-mediated drug delivery system: synthesis and drug delivery response. Adv Drug Deliv Rev. 2011;63:1332–1339. doi:10.1016/j.addr.2011.04.00121514336
  • Yan Y, Wang R, Hu Y, et al. Stacking of doxorubicin on folic acid-targeted multiwalled carbon nanotubes for in vivo chemotherapy of tumors. Drug Deliv. 2018;25:1607–1616. doi:10.1080/10717544.2018.150112030348025
  • Ji Z, Lin G, Lu Q, et al. Targeted therapy of SMMC-7721 liver cancer in vitro and in vivo with carbon nanotubes based drug delivery system. J Colloid Interface Sci. 2012;365:143–149. doi:10.1016/j.jcis.2011.09.01321974923
  • Wu W, Li R, Bian X, et al. Covalently combining carbon nanotubes with anticancer agent: preparation and antitumor activity. ACS Nano. 2009;3:2740–2750. doi:10.1021/nn900568619702292
  • Ma X, Zare Y, Rhee KY. A two-step methodology to study the influence of aggregation/agglomeration of nanoparticles on Young’s modulus of polymer nanocomposites. Nanoscale Res Lett. 2017;12:621. doi:10.1186/s11671-017-2386-029247323
  • Demming A. Nanotechnology under the skin. Nanotechnol. 2011;22:260201. doi:10.1088/0957-4484/22/26/260201
  • Medepalli K, Alphenaar B, Raj A, et al. Evaluation of the direct and indirect response of blood leukocytes to carbon nanotubes (CNTs). Nanomedicine. 2011;7:983–991. doi:10.1016/j.nano.2011.04.00221616167
  • Alshehri R, Ilyas AM, Hasan A, et al. Carbon nanotubes in biomedical applications: factors, mechanisms, and remedies of toxicity. J Med Chem. 2016;59:8149–8167. doi:10.1021/acs.jmedchem.5b0177027142556
  • Niezabitowska E, Smith J, Prestly MR, et al. Facile production of nanocomposites of carbon nanotubes and polycaprolactone with high aspect ratios with potential applications in drug delivery. RSC Adv. 2018;8:16444–16454. doi:10.1039/C7RA13553J30009019
  • Kim JS, Song KS, Joo HJ, et al. Determination of cytotoxicity attributed to multiwall carbon nanotubes (MWCNT) in normal human embryonic lung cell (WI-38) line. J Toxicol Environ Health A. 2010;73:1521–1529. doi:10.1080/15287394.2010.51157720954078
  • Wick P, Manser P, Limbach LK, et al. The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett. 2007;168:121–131. doi:10.1016/j.toxlet.2006.08.01917169512
  • Belyanskaya L, Weigel S, Hirsch C, et al. Effects of carbon nanotubes on primary neurons and glial cells. Neurotoxicology. 2009;30:702–711. doi:10.1016/j.neuro.2009.05.00519465056
  • Ryman-Rasmussen JP, Cesta MF, Brody AR, et al. Inhaled carbon nanotubes reach the sub-pleural tissue in mice. Nat Nanotechnol. 2009;4:747–751. doi:10.1038/nnano.2009.30519893520
  • Poland CA, Duffin R, Kinloch I, et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol. 2008;3:423–428. doi:10.1038/nnano.2008.11118654567
  • Girardi FA, Bruch GE, Peixoto CS, et al. Toxicity of single-wall carbon nanotubes functionalized with polyethylene glycol in zebrafish (Danio rerio) embryos. J Appl Toxicol. 2017;37:214–221. doi:10.1002/jat.v37.227320845
  • Fanizza C, Paba E, Casciardi S, et al. Cytotoxic and genotoxic effects of multi-walled carbon nanotubes on human bronchial normal cells (BEAS-2B). Toxicol Lett. 2009;189:S186. doi:10.1016/j.toxlet.2009.06.648
  • Sweeney S, Berhanu D, Misra SK, et al. Multi-walled carbon nanotube length as a critical determinant of bioreactivity with primary human pulmonary alveolar cells. Carbon N Y. 2014;78:26–37. doi:10.1016/j.carbon.2014.06.03325780270
  • Liu D, Wang L, Wang Z, et al. Different cellular response mechanisms contribute to the length-dependent cytotoxicity of multi-walled carbon nanotubes. Nanoscale Res Lett. 2012;7:361. doi:10.1186/1556-276X-7-36122748010
  • Fujita K, Fukuda M, Endoh S, et al. Size effects of single-walled carbon nanotubes on in vivo and in vitro pulmonary toxicity. Inhal Toxicol. 2015;27:207–223. doi:10.3109/08958378.2015.102662025865113
  • Meng J, Cheng X, Liu J, et al. Effects of long and short carboxylated or aminated multiwalled carbon nanotubes on blood coagulation. PLoS One. 2012;7:e38995. doi:10.1371/journal.pone.003899522808023
  • Louro H, Pinhao M, Santos J, et al. Evaluation of the cytotoxic and genotoxic effects of benchmark multi-walled carbon nanotubes in relation to their physicochemical properties. Toxicol Lett. 2016;262:123–134. doi:10.1016/j.toxlet.2016.09.01627702663
  • Kavosi A, Hosseini Ghale Noei S, Madani S, et al. The toxicity and therapeutic effects of single-and multi-wall carbon nanotubes on mice breast cancer. Sci Rep. 2018;8:8375. doi:10.1038/s41598-018-26790-x29849103
  • Sohaebuddin SK, Thevenot PT, Baker D, et al. Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part Fibre Toxicol. 2010;7:22. doi:10.1186/1743-8977-7-2220727197
  • Martinez CS, Igartua DE, Czarnowski I, et al. Biological response and developmental toxicity of zebrafish embryo and larvae exposed to multi-walled carbon nanotubes with different dimension. Heliyon. 2019;5:e02308. doi:10.1016/j.heliyon.2019.e0230831485519
  • Shen Z, Wu J, Yu Y, et al. Comparison of cytotoxicity and membrane efflux pump inhibition in HepG2 cells induced by single-walled carbon nanotubes with different length and functional groups. Sci Rep. 2019;9:7557. doi:10.1038/s41598-019-43900-531101842
  • Harik VM. Geometry of carbon nanotubes and mechanisms of phagocytosis and toxic effects. Toxicol Lett. 2017;273:69–85. doi:10.1016/j.toxlet.2017.03.01628341208
  • Sasaki T, Asakura M, Ishioka C, et al. In vitro chromosomal aberrations induced by various shapes of multi-walled carbon nanotubes (MWCNTs). J Occup Health. 2016;58:16–99.26498979
  • Allegri M, Perivoliotis DK, Bianchi MG, et al. Toxicity determinants of multi-walled carbon nanotubes: the relationship between functionalization and agglomeration. Toxicol Rep. 2016;3:230–243. doi:10.1016/j.toxrep.2016.01.01128959543
  • Haniu H, Saito N, Matsuda Y, et al. Biological responses according to the shape and size of carbon nanotubes in BEAS-2B and MESO-1 cells. Int J Nanomedicine. 2014;9:1979–1990. doi:10.2147/IJN24790438
  • Hu X, Cook S, Wang P, et al. In vitro evaluation of cytotoxicity of engineered carbon nanotubes in selected human cell lines. Sci Total Environ. 2010;408:1812–1817. doi:10.1016/j.scitotenv.2010.01.03520167353
  • El-Gazzar AM, Abdelgied M, Alexander DB, et al. Comparative pulmonary toxicity of a DWCNT and MWCNT-7 in rats. Arch Toxicol. 2019;93:49–59. doi:10.1007/s00204-018-2336-330341734
  • Fenoglio I, Aldieri E, Gazzano E, et al. Thickness of multiwalled carbon nanotubes affects their lung toxicity. Chem Res Toxicol. 2012;25:74–82. doi:10.1021/tx200255h22128750
  • Rittinghausen S, Hackbarth A, Creutzenberg O, et al. The carcinogenic effect of various multi-walled carbon nanotubes (MWCNTs) after intraperitoneal injection in rats. Particle & Fibre Toxicology. 2014;11:59. doi:10.1186/s12989-014-0059-z25410479
  • Di Cristo L, Bianchi MG, Chiu M, et al. Comparative in vitro cytotoxicity of realistic doses of benchmark multi-walled carbon nanotubes towards macrophages and airway epithelial cells. Nanomaterials (Basel). 2019;9:982.
  • Sakamoto Y, Hojo M, Kosugi Y, et al. Comparative study for carcinogenicity of 7 different multi-wall carbon nanotubes with different physicochemical characteristics by a single intraperitoneal injection in male Fischer 344 rats. J Toxicol Sci. 2018;43:587–600. doi:10.2131/jts.43.58730298847