173
Views
13
CrossRef citations to date
0
Altmetric
Original Research

Glucose-Sensitive Nanoparticles Based On Poly(3-Acrylamidophenylboronic Acid-Block-N-Vinylcaprolactam) For Insulin Delivery

, , , , , , & show all
Pages 8059-8072 | Published online: 04 Oct 2019

References

  • Min J, Zhao Y, Slivka L, et al. Double burden of diseases worldwide: coexistence of undernutrition and overnutrition-related non-communicable chronic diseases. Obes Rev. 2017;19(1):49–61. doi:10.1111/obr.1260528940822
  • Marathe PH, Gao HX, Close KL. American Diabetes Association Standards of Medical Care in diabetes 2017. J Diabetes. 2017;9(4):320–324. doi:10.1111/1753-0407.1252428070960
  • Hu C, Jia W. Diabetes in China: epidemiology and genetic risk factors and their clinical utility in personalized medication. Diabetes. 2018;67(1):3–11. doi:10.2337/dbi17-001329263166
  • Ferreiro A, Lombardi R, Burdmann EA. Acute kidney injury after cardiac surgery is associated with mid-term but not long-term mortality: a cohort-based study. PLoS One. 2017;12(7):e0181158. doi:10.1371/journal.pone.018115828700753
  • Xu T, Dainelli L, Yu K, et al. The short-term health and economic burden of gestational diabetes mellitus in China: a modelling study. BMJ Open. 2017;7(12):e018893. doi:10.1136/bmjopen-2017-018893
  • Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75(1):1–18. doi:10.1016/j.colsurfb.2009.09.00119782542
  • Mccoy RG, Herrin J, Lipska KJ, Shah ND. Recurrent hospitalizations for severe hypoglycemia and hyperglycemia among U.S. adults with diabetes. J Diabetes Complications. 2018;32(7):693–701. doi:10.1016/j.jdiacomp.2018.04.00729751961
  • Song N, Chen GH, Cong HL, Yu B, Feng YM. The synthesis and application of dual temperature/pH-sensitive polymer nanoparticles. Integr Ferroelectr. 2017;181(1):151–155. doi:10.1080/10584587.2017.1352407
  • Zhao M, Lee SH, Song JG, et al. Enhanced oral absorption of sorafenib via the layer-by-layer deposition of a pH-sensitive polymer and glycol chitosan on the liposome. Int J Pharm. 2018;544(1):14–20. doi:10.1016/j.ijpharm.2018.04.02029655795
  • Zhang S, Chen H, Liu S, et al. Superabsorbent polymer with high swelling ratio, and temperature-sensitive and magnetic properties employed as an efficient dewatering medium of fine coal. Energy Fuel. 2017;31(2):1825–1831. doi:10.1021/acs.energyfuels.6b03083
  • Yetisen AK, Jiang N, Fallahi A, et al. Glucose‐sensitive hydrogel optical fibers functionalized with phenylboronic acid. Adv Mater. 2017;29(15):1606380. doi:10.1002/adma.201606380
  • Sato K, Shimizu S, Awaji K, et al. Lactate-induced decomposition of layer-by-layer films composed of phenylboronic acid-modified poly(allylamine) and poly(vinyl alcohol) under extracellular tumor conditions. J Colloid Interface Sci. 2018;510:302–307. doi:10.1016/j.jcis.2017.09.07528957746
  • Bajgrowiczcieslak M, Alqurashi Y, Elshereif MI, et al. Optical glucose sensors based on hexagonally-packed 2.5-dimensional photonic concavities imprinted in phenylboronic acid functionalized hydrogel films. RSC Adv. 2017;7(85):53916–53924. doi:10.1039/c7ra11184c29308195
  • Shiomori K, Ivanov AE, Galaev IY, et al. Thermoresponsive properties of sugar sensitive copolymer of N‐Isopropylacrylamide and 3‐(acrylamido)phenylboronic acid. Macromol Chem Phys. 2004;205(1):27–34. doi:10.1002/macp.200300019
  • Rahman M, Nahar Y, Ullah W, et al. Incorporation of iron oxide nanoparticles into temperature-responsive poly (N-isopropylacrylamide-co-acrylic acid) P (NIPAAm-AA) polymer hydrogel. J Polym Res. 2015;22(3):1–9. doi:10.1007/s10965-015-0673-y
  • Gaballa HA, Geever LM, Killion JA, et al. Synthesis, characterisation and drug release studies of pH and temperature sensitive chemically crosslinked N-vinylcaprolactam, acrylic acid, methacrylic acid, N,N-dimethylacrylamide and PEGDMA hydrogels. J Hydrogels. 2015;1(1):3–11. doi:10.1166/jh.2015.1002
  • Mishra S. Dispora and the difficult art of dying. Am J Nurs. 2004;14(6):421–424. doi:10.2307/3404866
  • Shatalov GV, Churilina EV, Kuznetsov VA, Verezhnikov VN. Copolymerization of N-vinylcaprolactam with N-vinyl(benz)imidazoles and the properties of aqueous solutions of the copolymers. Polym Sci. 2007;49(3–4):57–60. doi:10.1134/S1560090407030013
  • Bitar A, Fessi H, Elaissari A. Synthesis and characterization of thermally and glucose-sensitive poly N-vinylcaprolactam-based microgels. J Biomed Nanotechnol. 2012;8(5):709–719. doi:10.1166/jbn.2012.143922888741
  • J Z W, Bremner DH, Li HY, Sun X-Z, Zhu L-M. Synthesis and evaluation of temperature- and glucose-sensitive nanoparticles based on phenylboronic acid and N -vinylcaprolactam for insulin delivery. Mater Sci Eng C Mater Biol Appl. 2016;69(1):1026–1035. doi:10.1016/j.msec.2016.07.07827612799
  • Wu JZ, Williams GR, Li HY, et al. Glucose- and temperature-sensitive nanoparticles for insulin delivery. Int J Nanomedicine. 2017;12:4037–4057. doi:10.2147/IJN.S13298428603417
  • Wu JZ, Bremner DH, Li HY, Niu S-W, Li S-D, Zhu L-M. Phenylboronic acid-diol crosslinked 6-O-vinylazeloyl-d-galactose nanocarriers for insulin delivery. Mater Sci Eng C Mater Biol Appl. 2017;76(7):845–855. doi:10.1016/j.msec.2017.03.13928482599
  • Li Z, Qiongwei H, Yangyang L, et al. Boronic acid as glucose-sensitive agent regulates drug delivery for diabetes treatment. Materials. 2017;10(2):170. doi:10.3390/ma10020170
  • Guo Q, Zhang T, An J, et al. Block versus random amphiphilic glycopolymer nanopaticles as glucose-responsive vehicles. Biomacromolecules. 2015;16(10):3345–3356. doi:10.1021/acs.biomac.5b0102026397308
  • Zhang X, Wang Y, Zheng C, Li C. Phenylboronic acid-functionalized glycopolymeric nanoparticles for biomacromolecules delivery across nasal respiratory. Eur J Pharm Biopharm. 2012;82(1):76–84. doi:10.1016/j.ejpb.2012.05.01322659236
  • Ji Y, Zhu M, Gong Y, Tang H, Li J, Cao Y. Thermoresponsive polymers with lower critical solution temperature‐ or upper critical solution temperature‐type phase behaviour do not induce toxicity to human endothelial cells. Basic Clin Pharmacol Toxicol. 2017;120(1):79–85. doi:10.1111/bcpt.1264327422748
  • Zheng B, Luo Z, Deng Y, Zhang Q, Gao L, Dong S. A degradable low molecular weight monomer system with lower critical solution temperature behaviour in water. Chem Commun. 2019;55(6):782–785. doi:10.1039/c8cc09160a
  • Kitano S, Hisamitsu I, Koyama Y, Kataoka K, Okano T, Sakurai Y. Effect of the incorporation of amino groups in a glucose‐responsive polymer complex having phenylboronic acid moieties. Polym Adv Technol. 2010;2(5):261–264. doi:10.1002/pat.1991.220020508
  • Na W, Gao C, Lü S, et al. Novel amphiphilic glucose-responsive modified starch micelles for insulin delivery. RSC Adv. 2017;7(73):45978–45986. doi:10.1039/c7ra08291f
  • Vrbata D, Uchman M. Preparation of lactic acid- and glucose-responsive poly(ε-caprolactone)-b-poly(ethylene oxide) block copolymer micelles using phenylboronic ester as a sensitive block linkage. Nanoscale. 2018;10(18):8428–8442. doi:10.1039/c7nr09427b29666865
  • Farooqi ZH, Khan A, Siddiq M. Temperature-induced volume change and glucose sensitivity of poly [(N-isopropylacry-lamide)-co-acrylamide-co-(phenylboronic acid)] microgels. Polym Int. 2011;60(10):1481–1486. doi:10.1002/pi.3106
  • Xue S, Wu Y, Wang J, et al. Boron nitride nanosheets/PNIPAM hydrogels with improved thermo-responsive performance. Materials. 2018;11(7):1069. doi:10.3390/ma11071069
  • Khine YY, Ganda S, Stenzel MH. Covalent tethering of temperature responsive pNIPAm onto TEMPO-oxidized cellulose nanofibrils via three-component passerini reaction. ACS Macro Lett. 2018;7(4):412–418. doi:10.1021/acsmacrolett.8b00051
  • Aravopoulou D, Kyriakos K, Miasnikova A, Laschewsky A, Papadakis CM, Kyritsis A. Comparative investigation of the thermoresponsive behavior of two diblock copolymers comprising PNIPAM and PMDEGA Blocks. J Phys Chem B. 2018;122(9):2655–2668. doi:10.1021/acs.jpcb.7b0964729420029
  • Qian W, Xu P, Lu G, Huang X. Synthesis of PAA-g-PNVCL graft copolymer and studies on its loading of ornidazole. Chin J Chem. 2015;32(10):1049–1056. doi:10.1002/cjoc.201400472
  • Prabaharan M, Grailer JJ, Steeber DA, Gong S. Thermosensitive micelles based on folate-conjugated poly(N-vinylcaprolactam)-block-poly(ethylene glycol) for tumor-targeted drug delivery. Macromol Biosci. 2010;9(8):744–753. doi:10.1002/mabi.200800366
  • Wang B, Ma R, Liu G, et al. Glucose-responsive micelles from self-assembly of poly(ethylene glycol)-b-poly(acrylic acid-co-acrylamidophenylboronic acid) and the controlled release of insulin. Langmuir. 2009;25(21):12522–12528. doi:10.1021/la901776a19810675
  • Wang B, Ma R, Liu G, et al. Effect of coordination on the glucose-responsiveness of PEG-b-(PAA-co-PAAPBA) micelles. Macromol Rapid Commun. 2010;31(18):1628–1634. doi:10.1002/marc.20100016421567574
  • Guo Q, Wu Z, Zhang X, Sun L, Li C. Phenylboronate-diol crosslinked glycopolymeric nanocarriers for insulin delivery at physiological pH. Soft Matter. 2014;10(6):911–920. doi:10.1039/c3sm52485j24835766
  • Guo H, Li H, Gao J, et al. Phenylboronic acid-based amphiphilic glycopolymeric nanocarriers for in vivo insulin delivery. Polym Chem. 2016;7(18):3189–3199. doi:10.1039/c6py00131a
  • Xing S, Ying Y, Zhang Y. Kinetics of glucose-induced swelling of P(NIPAM-AAPBA) microgels. Macromolecules. 2011;44(11):4479–4486. doi:10.1021/ma200586w
  • Zhuo T, Ying G, Zhang Y. The synthesis of a contraction-type glucose-sensitive microgel working at physiological temperature guided by a new glucose-sensing mechanism. Polym Chem. 2018;9(8):1012–1021. doi:10.1039/C8PY00072G
  • Miki R, Takei C, Ohtani Y, et al. Glucose responsive rheological change and drug release from a novel worm-like micelle gel formed in cetyltrimethylammonium bromide/phenylboronic acid/water system. Mol Pharm. 2018;15(3):1097–1114. doi:10.1021/acs.molpharmaceut.7b0098829411982
  • Guo H, Guo Q, Chu T, Zhang X, Wu Z, Yu D. Glucose-sensitive polyelectrolyte nanocapsules based on layer-by-layer technique for protein drug delivery. J Mater Sci Mater Med. 2014;25(1):121–129. doi:10.1007/s10856-013-5055-624068543