147
Views
17
CrossRef citations to date
0
Altmetric
Original Research

Optimum Preparation Method for Self-Assembled PEGylation Nano-Adjuvant Based on Rehmannia glutinosa Polysaccharide and Its Immunological Effect on Macrophages

, , , , , , & show all
Pages 9361-9375 | Published online: 29 Nov 2019

References

  • Vishwakarma A, Bhise NS, Evangelista MB, Rouwkema J, Dokmeci MR, Ghaemmaghami AM. Engineering immunomodulatory biomaterials to tune the inflammatory response. Trends Biotechnol. 2016;34(6):435–520. doi:10.1016/j.tibtech.2016.03.00926879187
  • Acar H, Srivastava S, Chung EJ, et al. Self-assembling peptide-based building blocks in medical applications. Adv Drug Deliver Rev. 2017;110:65–79. doi:10.1016/j.addr.2016.08.006
  • Eskandari S, Guerin T, Toth IS, Stephenson RJ. Recent advances in self-assembled peptides: implications for targeted drug delivery and vaccine engineering. Adv Drug Deliver Rev. 2017;110:169–187. doi:10.1016/j.addr.2016.06.013
  • Vllasaliu D, Fowler R, Stolnik S. PEGylated nanomedicines: recent progress and remaining concerns. Expert Opin Drug Del. 2013;11:1–16. doi:10.1517/17425247.2014.866651
  • Veronese FM, Mero A. The impact of PEGylation on biological therapies. BioDrugs. 2008;22(5):315–329. doi:10.2165/00063030-200822050-0000418778113
  • Steichen SD, Moore MC, Nicholas AP. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Euro J Pharm Sci. 2013;48:416–427. doi:10.1016/j.ejps.2012.12.006
  • Chang X, Yu W, Ji S, Shen L, Tan A, Hu T. Conjugation of PEG-hexadecane markedly increases the immunogenicity of pneumococcal polysaccharide conjugate vaccine. Vaccine. 2017;35(13):1698–1704. doi:10.1016/j.vaccine.2017.02.02728242069
  • Naseri H, Eskandari F, Jaafari M, Khamesipour A, Abbasi A, Badiee A. PEGylation of cationic liposomes encapsulating soluble leishmania antigens reduces the adjuvant efficacy of liposomes in murine model. Parasite Immunol. 2017;39(11):e12492. doi:10.1111/pim.12492
  • Sekiya T, Yamagishi J, Gray JHV, et al. PEGylation of a TLR2-agonist-based vaccine delivery system improves antigen trafficking and the magnitude of ensuing antiobody and CD8+ T cell responses. Biomaterials. 2017;137:61–72. doi:10.1016/j.biomaterials.2017.05.01828544973
  • Huang Y, Jiang C, Hu Y, et al. Immunoenhancement effect of rehmannia glutinosa polysaccharide on lymphocyte proliferation and dendritic cell. Carbohydr Polym. 2013;96:516–521. doi:10.1016/j.carbpol.2013.04.01823768595
  • Zhang Z, Meng Y, Guo Y, et al. Rehmannia glutinosa polysaccharide induces maturation of murine bone marrow derived dendritic cells (BMDCs). Int J Biol Macromol. 2013;54:136–143. doi:10.1016/j.ijbiomac.2012.12.00523246902
  • Wang Y, Kwak M, Lee PCW, Jin JO. Rehmannia glutinosa polysaccharide promoted activation of human dendritic cells. Int. J. Biol. Macromol. 2018;116:232–238. doi:10.1016/j.ijbiomac.2018.04.14429715554
  • Li H, Hong T, Jiang H, Liu S, Di L. The effects of rehmannia glutinosa polysaccharide on immune function of mice. 2015 7th International Conference on Information Technology in Medicine and Education (ITME) 2015;Huangshan, China 286–288. doi:10.1109/ITME.2015.63
  • Xu L, Kwak M, Zhang W, Zeng L, Lee PC, Jin JO. Rehmannia glutinosa polysaccharide induces toll-like receptor 4 dependent spleen dendritic cell maturation and anti-cancer immunity. Oncoimmunol. 2017;6(7):e1325981. doi:10.1080/2162402X.2017.1325981
  • Xu L, Zhang W, Zeng L, Jin JO. Rehmannia glutinosa polysaccharide induced an anti-cancer effect by activating natural killer cells. Int J Biol Macromol. 2017;105:680–685. doi:10.1016/j.ijbiomac.2017.07.09028716751
  • Kwak M, Yu K, Lee PC, Jin JO. Rehmannia glutinosa polysaccharide functions as a mucosal adjuvant to induce dendritic cell activation in mediastinal lymph node. Int J Biol Macromol. 2018;120:1618–1623. doi:10.1016/j.ijbiomac.2018.09.18730282011
  • Wang JL, Meng X, Lu RH, et al. Effects of Rehmannia glutinosa on growth performance, immunological parameters and disease resistance to Aeromonas hydrophila in common carp (Cyprinus carpio L.). Aquaculture. 2015;435(1):293–300. doi:10.1016/j.aquaculture.2014.10.004
  • Majdia H, Esfahania JA, Mohebbi M. Optimization of convective drying by response surface methodology. Comput Electron Agr. 2019;156:574–584. doi:10.1016/j.compag.2018.12.021
  • Niizawa I, Espinaco BY, Zorrilla SE, Sihufe GA. Natural astaxanthin encapsulation: use of response surface methodology for the design of alginate beads. Int J Biol Macromol. 2019;121:601–608. doi:10.1016/j.ijbiomac.2018.10.04430316768
  • Kim B, Pang HB, Kang J, Park JH, Ruoslahti E, Sailor MJ. Immunogene therapy with fusogenic nanoparticles modulates macrophage response to Staphylococcus aureus. Nat Commun. 2018;9:1969. doi:10.1038/s41467-018-04390-729773788
  • Hatami E, Mu Y, Shields DN, et al. Mannose-decorated hybrid nanoparticles for enhanced macrophage targeting. BB Reports. 2019;17:197–207. doi:10.1016/j.bbrep.2019.01.00730723809
  • Rodriguez AE, Ducker GS, Billingham LK, et al. Serine metabolism supports macrophage IL-1β production. Cell Metab. 2019;29(4):1003–1011. doi:10.1016/j.cmet.2019.01.01430773464
  • Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233:6425–6440. doi:10.1002/jcp.26429
  • Liu T, Zhu W, Han C, et al. Preparation of glycyrrhetinic acid liposomes using lyophilization monophase solution method: preformulation, optimization, and in vitro evaluation. Nanoscale Res Lett. 2018;13:324. doi:10.1186/s11671-018-2737-530327946
  • Wei T, Chen C, Liu J, et al. Anticancer drug nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance. P Natl Acad Sci USA. 2015;112(10):2978–2983. doi:10.1073/pnas.1418494112
  • Liu Z, Ma X, Deng B, et al. Development of liposomal Ganoderma lucidum polysaccharide: formulation optimization and evaluation of its immunological activity. Carbohydr Polym. 2015;117(6):510–517. doi:10.1016/j.carbpol.2014.09.09325498665
  • Chen J, Liu D, Shi B, Wang H, Cheng Y, Zhang W. Optimization of hydrolysis conditions for the production of glucomanno-oligosaccharides from konjac using-mannanase by response surface methodology. Carbohydr Polym. 2013;93(1):81–88. doi:10.1016/j.carbpol.2012.05.03723465904
  • Yin X, You Q, Jiang Z. Optimization of enzyme assisted extraction of polysaccharides from Tricholoma matsutake by response surface methodology. Carbohydr Polym. 2011;86(3):1358–1364. doi:10.1016/j.carbpol.2011.06.053
  • Weigert A, Knethen A, Fuhrmann D, Dehne N, Brune B. Redox-signals and macrophage biology. Mol Aspects Med. 2018;63:70–87. doi:10.1016/j.mam.2018.01.00329329794
  • Sridharan R, Cameron AR, Kelly DJ, Kearney CJ, O’Brien FJ. Biomaterial based modulation of macrophage polarization: a review and suggested design principles. Mater Today. 2015;18:313–325. doi:10.1016/j.mattod.2015.01.019
  • Titta AD, Ballester M, Julier Z, et al. Nanoparticle conjugation of CpG enhances adjuvancy for cellular immunity and memory recall at low dose. P Natl Acad Sci USA. 2013;110:19902–19907. doi:10.1073/pnas.1313152110
  • Koker SD, Cui J, Vanparijs N, et al. Engineering polymer hydrogel nanoparticles for lymph nodetargeted delivery. Angew Chem Int Edit. 2016;55(4):1334–1339. doi:10.1002/anie.201508626
  • Zeng Q, Jiang H, Wang T, Zhang Z, Gong T, Sun X. Cationic micelle delivery of Trp2 peptide for efficient lymphatic draining and enhanced cytotoxic T-lymphocyte responses. J Control Release. 2015;200:1–12. doi:10.1016/j.jconrel.2014.12.02425540903
  • Myers RH, Montgomery DC, Anderson-Cook CM. Response Surface Methodology: Process and Product Optimization Using Designed Experiments. Hoboken, New Jersey: John Wiley & Sons, Inc.; 2016.
  • Zhong K, Wang Q. Optimization of ultrasonic extraction of polysaccharides from dried longan pulp using response surface methodology. Carbohydr Polym. 2010;80:19–25. doi:10.1016/j.carbpol.2009.10.066
  • Mourabet M, El Rhilassi A, El Boujaady H, Bennani-Ziatni M, Taitai A. Use of response surface methodology for optimization of fluoride adsorption in an aqueous solution by brushite. Arab J Chem. 2017;10:S3292–S3302. doi:10.1016/j.arabjc.2013.12.028
  • Liu Y, Hardie J, Zhang X, Rotello VM. Effects of engineered nanoparticles on the innate immune system. Semin Immunol. 2017;34:25–32. doi:10.1016/j.smim.2017.09.01128985993
  • Huang Y, Wu C, Liu Z, et al. Optimization on preparation conditions of Rehmannia glutinosa polysaccharide liposome and its immunological activity. Carbohydr Polym. 2014;104:118–126. doi:10.1016/j.carbpol.2014.01.02224607168
  • Jiang W, Kim BY, Rutka JT, Chan WC. Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol. 2008;3:145–150. doi:10.1038/nnano.2008.3018654486
  • Albanese A, Tang PS, Chan WC. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng. 2012;14:1–16. doi:10.1146/annurev-bioeng-071811-15012422524388
  • Cha BH, Shin SR, Leijten J, et al. Integrin-mediated interactions control macrophage polarization in 3D hydrogels. Adv Healthc Mater. 2017;6:1700289. doi:10.1002/adhm.201700289
  • Parise A, Milelli A, Tumiatti V, Minarini A, Neviani P, Zuccari G. Preparation, characterization and in vitro evaluation of sterically stabilized liposome containing a naphthalenediimide derivative as anticancer agent. Drug Deliv. 2015;22:590–597. doi:10.3109/10717544.2013.86104224286206
  • Hinrichs WL, Sanders NN, Smedt DSC, Demeester J, Frijlink HW. Inulin is a promising cryo- and lyoprotectant for PEGylated lipoplexes. J Control Release. 2005;103:465–479. doi:10.1016/j.jconrel.2004.12.01115763627
  • Yang T, Cui FD, Choi MK, et al. Enhanced solubility and stability of PEGylated liposomal paclitaxel: in vitro and in vivo evaluation. Int J Pharmaceut. 2007;338:317–326. doi:10.1016/j.ijpharm.2007.02.011