361
Views
32
CrossRef citations to date
0
Altmetric
Review

Breakthroughs in medicine and bioimaging with up-conversion nanoparticles

ORCID Icon, , & ORCID Icon
Pages 7759-7780 | Published online: 23 Sep 2019

References

  • Kim BYS, Rutka JT, Chan WCW. Nanomedicine. N Engl J Med. 2010;363(25):2434–2443. doi:10.1056/NEJMra091227321158659
  • Chow EK-H, Ho D. Cancer nanomedicine: from drug delivery to imaging. Sci Transl Med. 2013;5(216):216rv214–216rv214. doi:10.1126/scitranslmed.3005872
  • Kairdolf BA, Qian X, Nie S. Bioconjugated nanoparticles for biosensing, in vivo imaging, and medical diagnostics. Anal Chem. 2017;89(2):1015–1031. doi:10.1021/acs.analchem.6b0487328043119
  • Liu Y, Miyoshi H, Nakamura M. Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int J Cancer. 2007;120(12):2527–2537. doi:10.1002/ijc.2270917390371
  • Shang L, Nienhaus K, Nienhaus GU. Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnology. 2014;12:5. doi:10.1186/1477-3155-12-524491160
  • Popović Z, Liu W, Chauhan VP, et al. A nanoparticle size series for in vivo fluorescence imaging. Angew Chem Int Ed. 2010;49(46):8649–8652. doi:10.1002/anie.201003142
  • Khajeh M, Laurent S, Dastafkan K. Nanoadsorbents: classification, preparation, and applications (with emphasis on aqueous media). Chem Rev. 2013;113(10):7728–7768. doi:10.1021/cr400086v23869773
  • Yamada T, Fukuhara K, Matsuoka K, et al. Nanoparticle chemisorption printing technique for conductive silver patterning with submicron resolution. Nat Commun. 2016;7:11402. doi:10.1038/ncomms1140227091238
  • De Jong WH, Borm PJA. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine. 2008;3(2):133–149.18686775
  • Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed. 2014;53(46):12320–12364. doi:10.1002/anie.201403036
  • De Crozals G, Bonnet R, Farre C, Chaix C. Nanoparticles with multiple properties for biomedical applications: a strategic guide. Nano Today. 2016;11(4):435–463. doi:10.1016/j.nantod.2016.07.002
  • Shen S, Wu Y, Liu Y, Wu D. High drug-loading nanomedicines: progress, current status, and prospects. Int J Nanomedicine. 2017;12:4085–4109. doi:10.2147/IJN.S13278028615938
  • Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Controlled Release. 2015;200:138–157. doi:10.1016/j.jconrel.2014.12.030
  • Prencipe G, Tabakman SM, Welsher K, et al. PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation. J Am Chem Soc. 2009;131(13):4783–4787. doi:10.1021/ja809086q19173646
  • Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33(10):2373–2387. doi:10.1007/s11095-016-1958-527299311
  • Ventola CL. Progress in nanomedicine: approved and investigational nanodrugs. PT. 2017;42(12):742–755.
  • Singh R, Lillard JW. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009;86(3):215–223. doi:10.1016/j.yexmp.2008.12.00419186176
  • Barreto JA, O’Malley W, Kubeil M, Graham B, Stephan H, Spiccia L. Nanomaterials: applications in cancer imaging and therapy. Adv Mater. 2011;23(12):H18–H40. doi:10.1002/adma.20110014021433100
  • Rwei AY, Wang W, Kohane DS. Photoresponsive nanoparticles for drug delivery. Nano Today. 2015;10(4):451–467. doi:10.1016/j.nantod.2015.06.00426644797
  • Kou L, Sun J, Zhai Y, He Z. The endocytosis and intracellular fate of nanomedicines: implication for rational design. Asian J Pharm Sci. 2013;8(1):1–10. doi:10.1016/j.ajps.2013.07.001
  • Yameen B, Choi WI, Vilos C, Swami A, Shi J, Farokhzad OC. Insight into nanoparticle cellular uptake and intracellular targeting. J Controlled Release. 2014;190:485–499. doi:10.1016/j.jconrel.2014.06.038
  • Min Y, Roche KC, Tian S, et al. Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat Nano. 2017 advance online publication. doi:10.1038/nnano.2017.113
  • Singh L, Kruger HG, Maguire GEM, Govender T, Parboosing R. The role of nanotechnology in the treatment of viral infections. Ther Adv Infect Dis. 2017;4(4):105–131. doi:10.1177/204993611771359328748089
  • Gendelman HE, Anantharam V, Bronich T, et al. Nanoneuromedicines for degenerative, inflammatory, and infectious nervous system diseases. Nanomed. Nanotechnol Biol Med. 2015;11(3):751–767. doi:10.1016/j.nano.2014.12.014
  • Park S-M, Aalipour A, Vermesh O, Yu JH, Gambhir SS. Towards clinically translatable in vivo nanodiagnostics. Nat Rev Mater. 2017;2:17014. doi:10.1038/natrevmats.2017.1429876137
  • Jennifer M, Maciej W. Nanoparticle technology as a double-edged sword: cytotoxic, genotoxic and epigenetic effects on living cells. J Biomater Nanobiotechnol. 2013;04(01):11. doi:10.4236/jbnb.2013.41008
  • Choueiri RM, Galati E, Thérien-Aubin H, et al. Surface patterning of nanoparticles with polymer patches. Nature. 2016;538(7623):79–83. doi:10.1038/nature1908927556943
  • Zhang L, Li Y, Yu JC. Chemical modification of inorganic nanostructures for targeted and controlled drug delivery in cancer treatment. J Mater Chem B. 2014;2(5):452–470. doi:10.1039/C3TB21196G
  • Shen J, Zhao L, Han G. Lanthanide-doped upconverting luminescent nanoparticle platforms for optical imaging-guided drug delivery and therapy. Adv Drug Deliv Rev. 2013;65(5):744–755. doi:10.1016/j.addr.2012.05.00722626980
  • Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7(9):771–782. doi:10.1038/nrd261418758474
  • Cao Y, Jin R, Mirkin CA. DNA-modified core−shell Ag/Au nanoparticles. J Am Chem Soc. 2001;123(32):7961–7962. doi:10.1021/ja011342n11493092
  • Feng X, Yao J, Gao X, et al. Multi-targeting peptide-functionalized nanoparticles recognized vasculogenic mimicry, tumor neovasculature, and glioma cells for enhanced anti-glioma therapy. ACS Appl Mater Interfaces. 2015;7(50):27885–27899. doi:10.1021/acsami.5b0993426619329
  • Lu J, Shi M, Shoichet MS. Click chemistry functionalized polymeric nanoparticles target corneal epithelial cells through RGD-cell surface receptors. Bioconjug Chem. 2009;20(1):87–94. doi:10.1021/bc800316719099361
  • Sapsford KE, Algar WR, Berti L, et al. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev. 2013;113(3):1904–2074. doi:10.1021/cr300143v23432378
  • Banerjee SS, Aher N, Patil R, Khandare J. Poly(ethylene glycol)-prodrug conjugates: concept, design, and applications. J Drug Deliv. 2012;2012:103973. doi:10.1155/2012/10397322645686
  • Tao Z, Hong G, Shinji C, et al. Biological imaging using nanoparticles of small organic molecules with fluorescence emission at wavelengths longer than 1000 nm. Angew Chem. 2013;125(49):13240–13244. doi:10.1002/ange.201307346
  • Song J, Huang P, Chen X. Preparation of plasmonic vesicles from amphiphilic gold nanocrystals grafted with polymer brushes. Nat Protoc. 2016;11:2287. doi:10.1038/nprot.2016.13727763624
  • Cheng L, Song J, Yin J, Duan H. Self-assembled plasmonic dimers of amphiphilic gold nanocrystals. J Phys Chem Lett. 2011;2(17):2258–2262. doi:10.1021/jz201011b
  • Liu Y, Lu Y, Yang X, et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature. 2017;543:229. doi:10.1038/nature2136628225761
  • Wang M, Zhu Y, Mao C. Synthesis of NIR-responsive NaYF4: Yb,ErUpconversion fluorescent nanoparticles using an optimized solvothermal method and their applications in enhanced development of latent fingerprints on various smooth substrates. Langmuir. 2015;31(25):7084–7090. doi:10.1021/acs.langmuir.5b0115126089129
  • Zhou B, Shi B, Jin D, Liu X. Controlling upconversion nanocrystals for emerging applications. Nat Nanotechnol. 2015;10:924. doi:10.1038/nnano.2015.25126530022
  • Zhu H, Chen X, Jin LM, Wang QJ, Wang F, Yu SF. Amplified spontaneous emission and lasing from lanthanide-doped up-conversion nanocrystals. ACS Nano. 2013;7(12):11420–11426. doi:10.1021/nn405387t24266853
  • Yao W, Tian Q, Wu W. Tunable emissions of upconversion fluorescence for security applications. Adv Opt Mater. 2019;7(6):1801171. doi:10.1002/adom.v7.6
  • Wang J, Wei T, Li X, et al. Near-infrared-light-mediated imaging of latent fingerprints based on molecular recognition. Angew Chem Int Ed. 2014;53(6):1616–1620. doi:10.1002/anie.201308843
  • Zhang C, Zhou H-P, Liao L-Y, et al. Luminescence modulation of ordered upconversion nanopatterns by a photochromic diarylethene: rewritable optical storage with nondestructive readout. Adv Mater. 2010;22(5):633–637. doi:10.1002/adma.20090172220217763
  • Liu H, Xu J, Wang H, et al. Tunable Resonator-Upconverted Emission (TRUE) color printing and applications in optical security. Adv Mater. 2019;31(15):1807900. doi:10.1002/adma.201802348
  • Meruga JM, Baride A, Cross W, Kellar JJ, May PS. Red-green-blue printing using luminescence-upconversion inks. J Mater Chem C. 2014;2(12):2221–2227. doi:10.1039/c3tc32233e
  • You M, Zhong J, Hong Y, Duan Z, Lin M, Xu F. Inkjet printing of upconversion nanoparticles for anti-counterfeit applications. Nanoscale. 2015;7(10):4423–4431. doi:10.1039/c4nr06944g25613526
  • You M, Lin M, Wang S, et al. Three-dimensional quick response code based on inkjet printing of upconversion fluorescent nanoparticles for drug anti-counterfeiting. Nanoscale. 2016;8(19):10096–10104. doi:10.1039/c6nr01353h27119377
  • Bloembergen N. Solid state infrared quantum counters. Phys Rev Lett. 1959;2(3):84–85. doi:10.1103/PhysRevLett.2.84
  • Auzel F. Compteur Quantique Par Transfert Denergie Entre Deux Ions De Terres Rares Dans Un Tungstate Mixte Et Dans Un Verre. CR Acad Sci Paris 1966;262:1016–1019.
  • Dodson CM, Zia R. Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: calculated emission rates and oscillator strengths. Phys Rev B. 2012;86(12):125102. doi:10.1103/PhysRevB.86.125102
  • Dong H, Sun L-D, Yan C-H. Energy transfer in lanthanide upconversion studies for extended optical applications. Chem Soc Rev. 2015;44(6):1608–1634. doi:10.1039/c4cs00188e25242465
  • Seth M, Dolg M, Fulde P, Schwerdtfeger P. Lanthanide and actinide contractions: relativistic and shell structure effects. J Am Chem Soc. 1995;117(24):6597–6598. doi:10.1021/ja00129a026
  • Li X, Zhang F, Zhao D. Highly efficient lanthanide upconverting nanomaterials: progresses and challenges. Nano Today. 2013;8(6):643–676. doi:10.1016/j.nantod.2013.11.003
  • Li X, Zhang F, Zhao D. Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure. Chem Soc Rev. 2015;44(6):1346–1378. doi:10.1039/c4cs00163j25052250
  • Nakazawa E, Shionoya S. Energy transfer between trivalent rare‐earth ions in inorganic solids. J Chem Phys. 1967;47(9):3211–3219. doi:10.1063/1.1712377
  • Balestrieri M, Colis S, Gallart M, et al. Photoluminescence properties of rare earth (Nd, Yb, Sm, Pr)-doped CeO2 pellets prepared by solid-state reaction. J Mater Chem C. 2015;3(27):7014–7021. doi:10.1039/C5TC00075K
  • Downing E, Hesselink L, Ralston J, Macfarlane R. A three-color, solid-state, three-dimensional display. Science. 1996;273(5279):1185–1189. doi:10.1126/science.273.5279.1185
  • Sivakumar S, van Veggel FCJM, Raudsepp M. Bright white light through up-conversion of a single NIR source from Sol−Gel-derived thin film made with Ln3+-Doped LaF3 nanoparticles. J Am Chem Soc. 2005;127(36):12464–12465. doi:10.1021/ja052583o16144374
  • Sun L-D, Dong H, Zhang P-Z, Yan C-H. Upconversion of rare earth nanomaterials. Annu Rev Phys Chem. 2015;66(1):619–642. doi:10.1146/annurev-physchem-040214-12134425648487
  • Wang F, Deng R, Wang J, et al. Tuning upconversion through energy migration in core–shell nanoparticles. Nat Mater. 2011;10:968. doi:10.1038/nmat308422019945
  • Wang F, Liu X. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev. 2009;38(4):976–989. doi:10.1039/b809132n19421576
  • Ning K, Chao-Chao A, Ya-Ming Z, Zuo W, Lei R. Facile synthesis of upconversion nanoparticles with high purity using lanthanide oleate compounds. Nanotechnology. 2018;29(7):075601. doi:10.1088/1361-6528/aa96ee29083992
  • Liu G. Advances in the theoretical understanding of photon upconversion in rare-earth activated nanophosphors. Chem Soc Rev. 2015;44(6):1635–1652. doi:10.1039/c4cs00187g25286989
  • Suyver JF, Grimm J, van Veen MK, Biner D, Krämer KW, Güdel HU. Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+. J Lumin. 2006;117(1):1–12. doi:10.1016/j.jlumin.2005.03.011
  • Wang F, Deng R, Wang J, et al. Tuning upconversion through energy migration in core–shell nanoparticles. Nat Mater. 2011;10(12):968–973. doi:10.1038/nmat314922019945
  • Chen G, Qiu H, Prasad PN, Chen X. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem Rev. 2014;114(10):5161–5214. doi:10.1021/cr400425h24605868
  • Gai S, Li C, Yang P, Lin J. Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. Chem Rev. 2014;114(4):2343–2389. doi:10.1021/cr400159424344724
  • Yang D, Dai Y, Liu J, et al. Ultra-small BaGdF5-based upconversion nanoparticles as drug carriers and multimodal imaging probes. Biomaterials. 2014;35(6):2011–2023. doi:10.1016/j.biomaterials.2013.11.01824314558
  • Xu D, Li A, Yao L, Lin H, Yang S, Zhang Y. Lanthanide-doped KLu2F7 nanoparticles with high upconversion luminescence performance: a comparative study by judd-ofelt analysis and energy transfer mechanistic investigation. Sci Rep. 2017;7:43189. doi:10.1038/srep4318928230083
  • Liu D, Xu X, Du Y, et al. Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals. Nat Commun. 2016;7:10254. doi:10.1038/ncomms1025426743184
  • Gargas DJ, Chan EM, Ostrowski AD, et al. Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging. Nat Nanotechnol. 2014;9:300. doi:10.1038/nnano.2014.2924633523
  • Wang F, Han Y, Lim CS, et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature. 2010;463(7284):1061–1065. doi:10.1038/nature0877720182508
  • Gu M, Zhang Q, Lamon S. Nanomaterials for optical data storage. Nat Rev Mater. 2016;1:16070. doi:10.1038/natrevmats.2016.70
  • Zhou B, Shi B, Jin D, Liu X. Controlling upconversion nanocrystals for emerging applications. Nat Nano. 2015;10(11):924–936. doi:10.1038/nnano.2015.251
  • Wen S, Zhou J, Zheng K, Bednarkiewicz A, Liu X, Jin D. Advances in highly doped upconversion nanoparticles. Nat Commun. 2018;9(1):2415. doi:10.1038/s41467-018-04813-529925838
  • Zhao J, Jin D, Schartner EP, et al. Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nat Nanotechnol. 2013;8:729. doi:10.1038/nnano.2013.17123995455
  • Dexter DL, Schulman JH. Theory of concentration quenching in inorganic phosphors. J Chem Phys. 1954;22(6):1063–1070. doi:10.1063/1.1740265
  • Tu L, Liu X, Wu F, Zhang H. Excitation energy migration dynamics in upconversion nanomaterials. Chem Soc Rev. 2015;44(6):1331–1345. doi:10.1039/c4cs00168k25223635
  • Li M, Hao ZH, Peng XN, Li JB, Yu XF, Wang QQ. Controllable energy transfer in fluorescence upconversion of NdF3 and NaNdF4 nanocrystals. Opt Express. 2010;18(4):3364–3369. doi:10.1364/OE.18.00336420389345
  • Taniguchi T, Murakami T, Funatsu A, Hatakeyama K, Koinuma M, Matsumoto Y. Reversibly tunable upconversion luminescence by host–guest chemistry. Inorg Chem. 2014;53(17):9151–9155. doi:10.1021/ic501129y25122035
  • Deng R, Xie X, Vendrell M, Chang Y-T, Liu X. Intracellular glutathione detection using mno2-nanosheet-modified upconversion nanoparticles. J Am Chem Soc. 2011;133(50):20168–20171. doi:10.1021/ja210077422107163
  • Ran W, Wang L, Tan L, Qu D, Shi J. Remote control effect of Li+, Na+, K+ Ions on the super energy transfer process in ZnMoO4: Eu3+,Bi3+ phosphors. Sci Rep. 2016;6:27657. doi:10.1038/srep2765727278286
  • Zhong Y, Rostami I, Wang Z, Dai H, Hu Z. Energy migration engineering of bright rare‐earth upconversion nanoparticles for excitation by light‐emitting diodes. Adv Mater. 2015;27(41):6418–6422. doi:10.1002/adma.20150227226393770
  • Zhong Y, Tian G, Gu Z, et al. Elimination of photon quenching by a transition layer to fabricate a quenching‐shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+‐sensitized nanoparticles. Adv Mater. 2014;26(18):2831–2837. doi:10.1002/adma.20130490324338994
  • Wang F, Deng R, Liu X. Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes. Nat Protoc. 2014;9:1634. doi:10.1038/nprot.2014.11124922272
  • Chen X, Peng D, Ju Q, Wang F. Photon upconversion in core-shell nanoparticles. Chem Soc Rev. 2015;44(6):1318–1330. doi:10.1039/c4cs00151f25058157
  • Wang F, Deng R, Liu X. Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes. Nat Protoc. 2014;9(7):1634–1644. doi:10.1038/nprot.2014.11124922272
  • Li X, Shen D, Yang J, et al. Successive layer-by-layer strategy for multi-shell epitaxial growth: shell thickness and doping position dependence in upconverting optical properties. Chem Mater. 2013;25(1):106–112. doi:10.1021/cm3033498
  • Chen G, Roy I, Yang C, et al. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem Rev. 2016;116(5):2826–2885. doi:10.1021/acs.chemrev.5b0014826799741
  • Huang P, Tu D, Zheng W, Zhou S, Chen Z, Chen X. Inorganic lanthanide nanoprobes for background-free luminescent bioassays. Sci China Mater. 2015;58(2):156–177. doi:10.1007/s40843-015-0019-4
  • Mir SH, Nagahara LA, Thundat T, Mokarian-Tabari P, Furukawa H, Khosla A. Review—organic-inorganic hybrid functional materials: an integrated platform for applied technologies. J Electrochem Soc. 2018;165(8):B3137–B3156. doi:10.1149/2.0191808jes
  • Kuhn S, Tiegel M, Herrmann A, et al. Effect of hydroxyl concentration on Yb3+ luminescence properties in a peraluminous lithium-alumino-silicate glass. Opt Mater Express. 2015;5(2):430–440. doi:10.1364/OME.5.000430
  • Yan Y, Faber AJ, de Waal H. Luminescence quenching by OH groups in highly Er-doped phosphate glasses. J Non Cryst Solids. 1995;181(3):283–290. doi:10.1016/S0022-3093(94)00528-1
  • Su Q, Han S, Xie X, et al. The effect of surface coating on energy migration-mediated upconversion. J Am Chem Soc. 2012;134(51):20849–20857. doi:10.1021/ja311104823210614
  • Yi G-S, Chow G-M. Water-soluble NaYF4: Yb,Er(Tm)/NaYF4/polymercore/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem Mater. 2007;19(3):341–343. doi:10.1021/cm062447y
  • Zhang F, Che R, Li X, et al. Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: shell thickness dependence in upconverting optical properties. Nano Lett. 2012;12(6):2852–2858. doi:10.1021/nl300421n22545710
  • Zhan Q, He S, Qian J, Cheng H, Cai F. Optimization of optical excitation of upconversion nanoparticles for rapid microscopy and deeper tissue imaging with higher quantum yield. Theranostics. 2013;3(5):306–316. doi:10.7150/thno.600723650478
  • Wisser MD, Fischer S, Siefe C, Alivisatos AP, Salleo A, Dionne JA. Improving quantum yield of upconverting nanoparticles in aqueous media via emission sensitization. Nano Lett. 2018;18(4):2689–2695. doi:10.1021/acs.nanolett.8b0063429589449
  • Rafik N, Qing Y, CJ A. The fluoride host: nucleation, growth, and upconversion of lanthanide-doped nanoparticles. Adv Opt Mater. 2015;3(4):482–509. doi:10.1002/adom.201400628
  • Mi C, Tian Z, Cao C, Wang Z, Mao C, Xu S. Novel microwave-assisted solvothermal synthesis of NaYF4: Yb,ErUpconversion nanoparticles and their application in cancer cell imaging. Langmuir. 2011;27(23):14632–14637. doi:10.1021/la204015m22029665
  • Murali G, Lee BH, Mishra RK, et al. Synthesis, luminescence properties, and growth mechanisms of YF3: Yb3+/Er3+nanoplates. J Mater Chem C. 2015;3(39):10107–10113. doi:10.1039/C5TC02034D
  • Liu X, Zhang X, Tian G, et al. A simple and efficient synthetic route for preparation of NaYF4 upconversion nanoparticles by thermo-decomposition of rare-earth oleates. CrystEngComm. 2014;16(25):5650–5661. doi:10.1021/acs.chemrev.5b00148
  • Zhong Y, Ma Z, Zhu S, et al. Boosting the down-shifting luminescence of rare-earth nanocrystals for biological imaging beyond 1500 nm. Nat Commun. 2017;8(1):737. doi:10.1038/s41467-017-00917-628963467
  • Mai H-X, Zhang Y-W, Sun L-D, Yan C-H. Size- and phase-controlled synthesis of monodisperse NaYF4: Yb,ErNanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscopy. J Phys Chem C. 2007;111(37):13730–13739. doi:10.1021/jp073919e
  • Mai H-X, Zhang Y-W, Si R, et al. High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. J Am Chem Soc. 2006;128(19):6426–6436. doi:10.1021/ja060212h16683808
  • Chen J, Zhao JX. Upconversion nanomaterials: synthesis, mechanism, and applications in sensing. Sensors. 2012;12(3):2414. doi:10.3390/s12030241422736958
  • Chen G, Shen J, Ohulchanskyy TY, et al. (α-NaYbF4:Tm3+)/CaF2Core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging. ACS Nano. 2012;6(9):8280–8287. doi:10.1021/nn302972r22928629
  • Dunne PW, Munn AS, Starkey CL, Huddle TA, Lester EH. Continuous-flow hydrothermal synthesis for the production of inorganic nanomaterials. Philos Trans R Soc Lond A. 2015;373(2057):20150015. doi:10.1098/rsta.2015.0015
  • Ma Y, Chen M, Li M. Hydrothermal synthesis of hydrophilic NaYF4: Yb,ernanoparticles with bright upconversion luminescence as biological label. Mater Lett. 2015;139:22–25. doi:10.1016/j.matlet.2014.10.042
  • Li C, Quan Z, Yang J, Yang P, Lin J. Highly uniform and monodisperse β-NaYF4: Ln3+(Ln = Eu, Tb, Yb/ Er,and Yb/Tm) hexagonal microprism crystals: hydrothermal synthesis and luminescent properties. Inorg Chem. 2007;46(16):6329–6337. doi:10.1021/ic070335i17602610
  • Zeng JH, Su J, Li ZH, Yan RX, Li YD. Synthesis and upconversion luminescence of hexagonal-phase NaYF4: Yb,Er3+ phosphors of controlled size and morphology. Adv Mater. 2005;17(17):2119–2123. doi:10.1002/adma.200402046
  • Zhou R, Li X. Effect of EDTA on the formation and upconversion of NaYF4:Yb3+/Er3+. Opt Mater Express. 2016;6(4):1313–1320. doi:10.1364/OME.6.001313
  • Wang Y, Cai R, Liu Z. Controlled synthesis of NaYF4: Yb, Er nanocrystals with upconversion fluorescence via a facile hydrothermal procedure in aqueous solution. CrystEngComm. 2011;13(6):1772–1774. doi:10.1039/c0ce00708k
  • Menyuk N, Dwight K, Pierce JW. NaYF4: Yb,Er—an efficient upconversion phosphor. Appl Phys Lett. 1972;21(4):159–161. doi:10.1063/1.1654325
  • Shen H, Wang F, Fan X, Wang M. Synthesis of LaF3: Yb3+,Ln3+ nanoparticles with improved upconversion luminescence. J Exp Nanosci. 2007;2(4):303–311. doi:10.1080/17458080701724943
  • Zhang F, Wan Y, Yu T, et al. Uniform nanostructured arrays of sodium rare‐earth fluorides for highly efficient multicolor upconversion luminescence. Angew Chem. 2007;119(42):8122–8125. doi:10.1002/ange.200702519
  • Qiu P, Zhou N, Chen H, Zhang C, Gao G, Cui D. Recent advances in lanthanide-doped upconversion nanomaterials: synthesis, nanostructures and surface modification. Nanoscale. 2013;5(23):11512–11525. doi:10.1039/c3nr03642a24121736
  • Ye X, Collins JE, Kang Y, et al. Morphologically controlled synthesis of colloidal upconversion nanophosphors and their shape-directed self-assembly. Proc Natl Acad Sci. 2010;107(52):22430–22435. doi:10.1073/pnas.100895810721148771
  • Dong C, van Veggel FCJM. Cation exchange in lanthanide fluoride nanoparticles. ACS Nano. 2009;3(1):123–130. doi:10.1021/nn800474719206258
  • Shao B, Zhao Q, Jia Y, et al. A novel synthetic route towards monodisperse β-NaYF4: Ln3+micro/nanocrystals from layered rare-earth hydroxides at ultra low temperature. Chem Commun. 2014;50(84):12706–12709. doi:10.1039/c4cc05191b
  • Lei P, An R, Yao S, et al. Ultrafast synthesis of novel hexagonal phase NaBiF4 upconversion nanoparticles at room temperature. Adv Mater. 2017;29:22. doi:10.1002/adma.201700681
  • Feldmann C, Jungk H-O. Preparation of sub-micrometer LnPO4 particles (Ln = La, Ce). J Mater Sci. 2002;37(15):3251–3254. doi:10.1023/A:1016131016637
  • Feldmann C, Jungk H-O. Polyol-mediated preparation of nanoscale oxide particles. Angew Chem Int Ed. 2001;40(2):359–362. doi:10.1002/(ISSN)1521-3773
  • Chen J, Herricks T, Xia Y. Polyol synthesis of platinum nanostructures: control of morphology through the manipulation of reduction kinetics. Angew Chem Int Ed. 2005;44(17):2589–2592. doi:10.1002/anie.200462668
  • Dong H, Du S-R, Zheng X-Y, et al. Lanthanide nanoparticles: from design toward bioimaging and therapy. Chem Rev. 2015;115(19):10725–10815. doi:10.1021/acs.chemrev.5b0009126151155
  • Gnach A, Lipinski T, Bednarkiewicz A, Rybka J, Capobianco JA. Upconverting nanoparticles: assessing the toxicity. Chem Soc Rev. 2015;44(6):1561–1584. doi:10.1039/c4cs00177j25176037
  • Xiong L, Yang T, Yang Y, Xu C, Li F. Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors. Biomaterials. 2010;31(27):7078–7085. doi:10.1016/j.biomaterials.2010.05.06520619791
  • Wang M, Abbineni G, Clevenger A, Mao C, Xu S. Upconversion nanoparticles: synthesis, surface modification and biological applications. Nanomed. Nanotechnol Biol Med. 2011;7(6):710–729. doi:10.1016/j.nano.2011.02.013
  • He S, Krippes K, Ritz S, et al. Ultralow-intensity near-infrared light induces drug delivery by upconverting nanoparticles. Chem Commun. 2015;51(2):431–434. doi:10.1039/c4cc07489k
  • Li N, Wen X, Liu J, Wang B, Zhan Q, He S. Yb3+-enhanced UCNP@SiO2 nanocomposites for consecutive imaging, photothermal-controlled drug delivery and cancer therapy. Opt Mater Express. 2016;6(4):1161–1171. doi:10.1364/OME.6.001161
  • Das GK, Stark DT, Kennedy IM. Potential toxicity of up-converting nanoparticles encapsulated with a bilayer formed by ligand attraction. Langmuir. 2014;30(27):8167–8176. doi:10.1021/la501595f24971524
  • Wong PT, Chen D, Tang S, et al. Modular integration of upconverting nanocrystal–dendrimer composites for folate receptor-specific NIR imaging and light-triggered drug release. Small. 2015;11(45):6078–6090. doi:10.1002/smll.20150157526476917
  • Wysokińska E, Cichos J, Kowalczyk A, et al. Toxicity mechanism of low doses of NaGdF4: Yb(3+),Er(3+)upconverting nanoparticles in activated macrophage cell lines. Biomolecules. 2019;9(1):14. doi:10.3390/biom9060228
  • Guller AE, Generalova AN, Petersen EV, et al. Cytotoxicity and non-specific cellular uptake of bare and surface-modified upconversion nanoparticles in human skin cells. Nano Res. 2015;8(5):1546–1562. doi:10.1007/s12274-014-0641-6
  • Wysokińska E, Cichos J, Zioło E, et al. Cytotoxic interactions of bare and coated NaGdF4: Yb3+:Er3+nanoparticles with macrophage and fibroblast cells. Toxicol in Vitro. 2016;32:16–25. doi:10.1016/j.tiv.2015.11.02126639924
  • Ramasamy P, Chandra P, Rhee SW, Kim J. Enhanced upconversion luminescence in NaGdF4: Yb,Ernanocrystals by Fe3+ doping and their application in bioimaging. Nanoscale. 2013;5(18):8711–8717. doi:10.1039/c3nr01608k23900204
  • Pem B, González-Mancebo D, Moros M, et al. Biocompatibility assessment of up-and down-converting nanoparticles: implications of interferences with in vitro assays. Method Appl Fluoresc. 2018;7(1):014001. doi:10.1088/2050-6120/aae9c8
  • González-Béjar M, Francés-Soriano L, Pérez-Prieto J. Upconversion nanoparticles for bioimaging and regenerative medicine. Front Bioeng Biotechnol. 2016;4:47. doi:10.3389/fbioe.2016.0004727379231
  • Wang F, Banerjee D, Liu Y, Chen X, Liu X. Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst. 2010;135(8):1839–1854. doi:10.1039/c0an00144a20485777
  • Chatterjee DK, Rufaihah AJ, Zhang Y. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials. 2008;29(7):937–943. doi:10.1016/j.biomaterials.2007.10.05118061257
  • Park YI, Lee KT, Suh YD, Hyeon T. Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging. Chem Soc Rev. 2015;44(6):1302–1317. doi:10.1039/c4cs00173g25042637
  • Lin X, Chen X, Zhang W, et al. Core–shell–shell upconversion nanoparticles with enhanced emission for wireless optogenetic inhibition. Nano Lett. 2018;18(2):948–956. doi:10.1021/acs.nanolett.7b0433929278506
  • Tsang M-K, Bai G, Hao J. Stimuli responsive upconversion luminescence nanomaterials and films for various applications. Chem Soc Rev. 2015;44(6):1585–1607. doi:10.1039/c4cs00171k25200182
  • Xu CT, Zhan Q, Liu H, et al. Upconverting nanoparticles for pre‐clinical diffuse optical imaging, microscopy and sensing: current trends and future challenges. Laser Photon Rev. 2013;7(5):663–697. doi:10.1002/lpor.201200052
  • Li X, Yi Z, Xue Z, Zeng S, Liu H. Multifunctional BaYbF5: Gd/Er upconversion nanoparticles for in vivo tri-modal upconversion optical, X-ray computed tomography and magnetic resonance imaging. Mater Sci Eng. 2017;75:510–516. doi:10.1016/j.msec.2017.02.085
  • Guan M, Dong H, Ge J, et al. Multifunctional upconversion–nanoparticles–trismethylpyridylporphyrin–fullerene nanocomposite: a near-infrared light-triggered theranostic platform for imaging-guided photodynamic therapy. NPG Asia Mater. 2015;7:e205. doi:10.1038/am.2015.82
  • Zhou J, Liu Z, Li F. Upconversion nanophosphors for small-animal imaging. Chem Soc Rev. 2012;41(3):1323–1349. doi:10.1039/c1cs15187h22008740
  • Liu Q, Sun Y, Li C, et al. 18F-labeled magnetic-upconversion nanophosphors via rare-earth cation-assisted ligand assembly. ACS Nano. 2011;5(4):3146–3157. doi:10.1021/nn200298y21384900
  • Zou W, Visser C, Maduro JA, Pshenichnikov MS, Hummelen JC. Broadband dye-sensitized upconversion of near-infrared light. Nat Photonics. 2012;6:560. doi:10.1038/nphoton.2012.158
  • Zijlmans HJMAA, Bonnet J, Burton J, et al. Detection of cell and tissue surface antigens using up-converting phosphors: a new reporter technology. Anal Biochem. 1999;267(1):30–36. doi:10.1006/abio.1998.29659918652
  • Wu S, Han G, Milliron DJ, et al. Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc Natl Acad Sci. 2009;106(27):10917–10921. doi:10.1073/pnas.090479210619541601
  • Vaithiyanathan M, R Bajgiran K, Darapaneni P, Safa N, Dorman JA, Melvin AT. Luminescent nanomaterials for droplet tracking in a microfluidic trapping array. Anal Bioanal Chem. 2019;411(1):157–170. doi:10.1007/s00216-018-1448-130483856
  • Pominova DV, Ryabova AV, Romanishkin ID, Makarov VI, Grachev PV. Bioimaging with controlled depth using upconversion nanoparticles. Paper presented at: SPIE Photonics Europe2018.
  • Raab O. Uber die wirkung Fluorescirender Stoffe auf Infusorien. Z Biol. 1900;39:524–546.
  • Von Tappenier H. Therapeutische versuche mit fluoreszierenden stoffen. Muench Med Wochenschr. 1903;47:2042–2044.
  • Figge FH, Weiland GS, Manganiello LO. Cancer detection and therapy; affinity of neoplastic, embryonic, and traumatized tissues for porphyrins and metalloporphyrins. Proc Soc Exp Biol Med Soc Exp Bio Med. 1948;68(3):640. doi:10.3181/00379727-68-16580
  • Schwartz S, Absolon K, Vermund H. Some relationships of porphyrins, X-rays and tumors. Univ Minn Med Bull. 1955;27:7.
  • Kelly J, Snell M. Hematoporphyrin derivative: a possible aid in the diagnosis and therapy of carcinoma of the bladder. J Urol. 1976;115(2):150–151. doi:10.1016/s0022-5347(17)59108-91249866
  • Idris NM, Jayakumar MKG, Bansal A, Zhang Y. Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications. Chem Soc Rev. 2015;44(6):1449–1478. doi:10.1039/c4cs00158c24969662
  • Oleinick NL, Morris RL, Belichenko I. The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem Photobiol Sci. 2002;1(1):1–21. doi:10.1039/b108586g12659143
  • Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2013;20(7):1126–1167. doi:10.1089/ars.2012.514923991888
  • Stummer W, Hassan A, Kempski O, Goetz C. Photodynamic therapy within edematous brain tissue: considerations on sensitizer dose and time point of laser irradiation. J Photochem Photobiol B. 1996;36(2):179–181.9002256
  • Lucky SS, Soo KC, Zhang Y. Nanoparticles in photodynamic therapy. Chem Rev. 2015;115(4):1990–2042. doi:10.1021/cr500419825602130
  • Spyratou E, Makropoulou M, Efstathopoulos E, Georgakilas A, Sihver L. Recent advances in cancer therapy based on dual mode gold nanoparticles. Cancers. 2017;9(12):173. doi:10.3390/cancers9120173
  • Idris NM, Gnanasammandhan MK, Zhang J, Ho PC, Mahendran R, Zhang Y. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat Med. 2012;18(10):1580–1585. doi:10.1038/nm.293322983397
  • Wang C, Cheng L, Liu Y, et al. Imaging‐guided pH‐sensitive photodynamic therapy using charge reversible upconversion nanoparticles under near‐infrared light. Adv Funct Mater. 2013;23(24):3077–3086. doi:10.1002/adfm.201202992
  • Chen Z, Chen H, Hu H, et al. Versatile synthesis strategy for carboxylic acid−functionalized upconverting nanophosphors as biological labels. J Am Chem Soc. 2008;130(10):3023–3029. doi:10.1021/ja076151k18278910
  • Zhao H, Hu W, Ma H, et al. Photo-induced charge-variable conjugated polyelectrolyte brushes encapsulating upconversion nanoparticles for promoted siRNA release and collaborative photodynamic therapy under NIR light irradiation. Adv Funct Mater. 2017;27(44):1702592. doi:10.1002/adfm.201702592
  • Liu B, Li C, Xing B, Yang P, Lin J. Multifunctional UCNPs@PDA-ICG nanocomposites for upconversion imaging and combined photothermal/photodynamic therapy with enhanced antitumor efficacy. J Mater Chem B. 2016;4(28):4884–4894. doi:10.1039/C6TB00799F
  • Zhou L, Wang R, Yao C, et al. Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers. Nat Commun. 2015;6:6938. doi:10.1038/ncomms793825907226
  • Min Y, Li J, Liu F, Yeow EKL, Xing B. Near‐infrared light‐mediated photoactivation of a platinum antitumor prodrug and simultaneous cellular apoptosis imaging by upconversion‐luminescent nanoparticles. Angew Chem Int Ed. 2014;53(4):1012–1016. doi:10.1002/anie.201308834
  • Yang Y, Liu F, Liu X, Xing B. NIR light controlled photorelease of siRNA and its targeted intracellular delivery based on upconversion nanoparticles. Nanoscale. 2013;5(1):231–238. doi:10.1039/c2nr32835f23154830
  • Wang M, Mi -C-C, Wang W-X, et al. Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4: Yb,ErUpconversion nanoparticles. ACS Nano. 2009;3(6):1580–1586. doi:10.1021/nn900491j19476317
  • Xiong L, Chen Z, Tian Q, Cao T, Xu C, Li F. High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors. Anal Chem. 2009;81(21):8687–8694. doi:10.1021/ac901960d19817386
  • Wang C, Cheng L, Liu Z. Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. Biomaterials. 2011;32(4):1110–1120. doi:10.1016/j.biomaterials.2010.09.06920965564
  • Cardoso MM, Peca IN, Roque ACA. Antibody-conjugated nanoparticles for therapeutic applications. Curr Med Chem. 2012;19(19):3103–3127.22612698
  • Feng W, Zhu X, Li F. Recent advances in the optimization and functionalization of upconversion nanomaterials for in vivo bioapplications. NPG Asia Mater. 2013;5:e75. doi:10.1038/am.2013.63
  • Tsoi KM, MacParland SA, Ma X-Z, et al. Mechanism of hard-nanomaterial clearance by the liver. Nat Mater. 2016;15:1212. doi:10.1038/nmat471827525571
  • Liu J, Yu M, Zhou C, Zheng J. Renal clearable inorganic nanoparticles: a new frontier of bionanotechnology. Mater Today. 2013;16(12):477–486. doi:10.1016/j.mattod.2013.11.003
  • Soo Choi H, Liu W, Misra P, et al. Renal clearance of quantum dots. Nat Biotechnol. 2007;25:1165. doi:10.1038/nbt127617891134
  • Liu C, Gao Z, Zeng J, et al. Magnetic/upconversion fluorescent NaGdF4: Yb,ErNanoparticle-based dual-modal molecular probes for imaging tiny tumors in vivo. ACS Nano. 2013;7(8):7227–7240. doi:10.1021/nn403089823879437
  • Ai X, Ho CJH, Aw J, et al. In vivo covalent cross-linking of photon-converted rare-earth nanostructures for tumour localization and theranostics. Nat Commun. 2016;7:10432. doi:10.1038/ncomms1043226786559
  • Dai Y, Xiao H, Liu J, et al. In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconverison nanoparticles. J Am Chem Soc. 2013;135(50):18920–18929. doi:10.1021/ja410028q24279316
  • Dai Y, Yang D, Yu D, et al. Mussel-inspired polydopamine-coated lanthanide nanoparticles for NIR-II/CT dual imaging and photothermal therapy. ACS Appl Mater Interfaces. 2017;9(32):26674–26683. doi:10.1021/acsami.7b0610928726368
  • Chen S, Weitemier AZ, Zeng X, et al. Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics. Science. 2018;359(6376):679. doi:10.1126/science.aaq114429439241
  • Hososhima S, Yuasa H, Ishizuka T, et al. Near-infrared (NIR) up-conversion optogenetics. Sci Rep. 2015;5:16533. doi:10.1038/srep1653326552717
  • Shah S, Liu J-J, Pasquale N, et al. Hybrid upconversion nanomaterials for optogenetic neuronal control. Nanoscale. 2015;7(40):16571–16577. doi:10.1039/c5nr03411f26415758
  • Wu X, Zhang Y, Takle K, et al. Dye-sensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications. ACS Nano. 2016;10(1):1060–1066. doi:10.1021/acsnano.5b0638326736013
  • Akshaya B, Haichun L, Gnanasammandhan JMK, Stefan AE, Yong Z. Quasi‐continuous wave near‐infrared excitation of upconversion nanoparticles for optogenetic manipulation of C. elegans. Small. 2016;12(13):1732–1743. doi:10.1002/smll.20150379226849846
  • Xiangzhao A, Linna L, Yang Z, et al. Remote regulation of membrane channel activity by site‐specific localization of lanthanide‐doped upconversion nanocrystals. Angew Chem Int Ed. 2017;56(11):3031–3035. doi:10.1002/anie.201612142