244
Views
14
CrossRef citations to date
0
Altmetric
Original Research

808 nm Near-Infrared Light-Excited UCNPs@mSiO2-Ce6-GPC3 Nanocomposites For Photodynamic Therapy In Liver Cancer

, , , , , , , , , ORCID Icon, & show all
Pages 10009-10021 | Published online: 20 Dec 2019

References

  • Zeng H, Zheng R, Guo Y, et al. Cancer survival in China, 2003-2005: a population-based study. Int J Cancer. 2015;136(8):1921–1930. doi:10.1002/ijc.2922725242378
  • Baskaran R, Lee J, Yang SG. Clinical development of photodynamic agents and therapeutic applications. Biomater Res. 2018;22:25. doi:10.1186/s40824-018-0140-z30275968
  • Agostinis P, Berg K, Cengel KA, et al. Photodynamic therapy of cancer: an update. CA Cancer J Clin. 2011;61(4):250–281. doi:10.3322/caac.2011421617154
  • Deng K, Li C, Huang S, et al. Recent progress in near infrared light triggered photodynamic therapy. Small. 2017;13(44). doi:10.1002/smll.201702299.
  • Kudinova NV, Berezov TT. Photodynamic therapy: search for ideal photosensitizer. Biomed Khim. 2009;55(5):558–569.20017389
  • Huang L, Li Z, Zhao Y, et al. Ultralow-power near infrared lamp light operable targeted organic nanoparticle photodynamic therapy. J Am Chem Soc. 2016;138(44):14586–14591. doi:10.1021/jacs.6b0539027786443
  • Abrahamse H, Hamblin MR. New photosensitizers for photodynamic therapy. Biochem J. 2016;473(4):347–364. doi:10.1042/BJ2015094226862179
  • Kwiatkowski S, Knap B, Przystupski D, et al. Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed Pharmacother. 2018;106:1098–1107. doi:10.1016/j.biopha.2018.07.04930119176
  • Zhou Z, Song J, Nie L, Chen X. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem Soc Rev. 2016;45(23):6597–6626. doi:10.1039/c6cs00271d27722328
  • Chen G, Qiu H, Prasad PN, Chen X. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem Rev. 2014;114(10):5161–5214. doi:10.1021/cr400425h24605868
  • Peng YP, Lu W, Ren P, et al. Multi-band up-converted lasing behavior in NaYF(4):Yb/Er nanocrystals. Nanomaterials (Basel). 2018;8(7). doi:10.3390/nano8070497.
  • He F, Feng L, Yang P, et al. Enhanced up/down-conversion luminescence and heat: simultaneously achieving in one single core-shell structure for multimodal imaging guided therapy. Biomaterials. 2016;105:77–88. doi:10.1016/j.biomaterials.2016.07.03127512942
  • Tian G, Zhang X, Gu Z, Zhao Y. Recent advances in upconversion nanoparticles-based multifunctional nanocomposites for combined cancer therapy. Adv Mater. 2015;27(47):7692–7712. doi:10.1002/adma.20150328026505885
  • Wang Y, Wang H, Liu D, Song S, Wang X, Zhang H. Graphene oxide covalently grafted upconversion nanoparticles for combined NIR mediated imaging and photothermal/photodynamic cancer therapy. Biomaterials. 2013;34(31):7715–7724. doi:10.1016/j.biomaterials.2013.06.04523859660
  • Li F, Du Y, Liu J, et al. Responsive assembly of upconversion nanoparticles for pH-activated and near-infrared-triggered photodynamic therapy of deep tumors. Adv Mater. 2018;30(35):e1802808. doi:10.1002/adma.20180280829999559
  • Idris NM, Jayakumar MK, Bansal A, Zhang Y. Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications. Chem Soc Rev. 2015;44(6):1449–1478. doi:10.1039/c4cs00158c24969662
  • Kamkaew A, Chen F, Zhan Y, Majewski RL, Cai W. Scintillating nanoparticles as energy mediators for enhanced photodynamic therapy. ACS Nano. 2016;10(4):3918–3935. doi:10.1021/acsnano.6b0140127043181
  • Chen X, Tang Y, Liu A, et al. NIR-to-red upconversion nanoparticles with minimized heating effect for synchronous multidrug resistance tumor imaging and therapy. ACS Appl Mater Interfaces. 2018;10(17):14378–14388. doi:10.1021/acsami.8b0040929648442
  • Liu B, Chen Y, Li C, et al. Poly(Acrylic acid) modification of Nd3+-sensitized upconversion nanophosphors for highly efficient UCL imaging and pH-responsive drug delivery. Advanced Functional Materials. 2015;25(29):4717–4729. doi:10.1002/adfm.201501582
  • Liu Y, Kang N, Lv J, et al. Deep photoacoustic/luminescence/magnetic resonance multimodal imaging in living subjects using high-efficiency upconversion nanocomposites. Adv Mater. 2016;28(30):6411–6419. doi:10.1002/adma.20150646027185066
  • Xie X, Gao N, Deng R, Sun Q, Xu QH, Liu X. Mechanistic investigation of photon upconversion in Nd(3+)-sensitized core-shell nanoparticles. J Am Chem Soc. 2013;135(34):12608–12611. doi:10.1021/ja407500223947580
  • Wu X, Yan P, Ren Z, et al. Ferric hydroxide-modified upconversion nanoparticles for 808 nm NIR-triggered synergetic tumor therapy with hypoxia modulation. ACS Appl Mater Interfaces. 2019;11(1):385–393. doi:10.1021/acsami.8b1842730556390
  • Feng L, He F, Liu B, et al. g-C3N4Coated upconversion nanoparticles for 808 nm near-infrared light triggered phototherapy and multiple imaging. Chem Mater. 2016;28(21):7935–7946. doi:10.1021/acs.chemmater.6b03598
  • Xu M, Yang G, Bi H, et al. Combination of CuS and g-C3N4 QDs on upconversion nanoparticles for targeted photothermal and photodynamic cancer therapy. Chemical Engineering Journal. 2019;360(15):866–878. doi:10.1016/j.cej.2018.12.052
  • Baumhoer D, Tornillo L, Stadlmann S, Roncalli M, Diamantis EK, Terracciano LM. Glypican 3 expression in human nonneoplastic, preneoplastic, and neoplastic tissues: a tissue microarray analysis of 4,387 tissue samples. Am J Clin Pathol. 2008;129(6):899–906. doi:10.1309/HCQWPWD50XHD2DW618480006
  • Hanaoka H, Nagaya T, Sato K, et al. Glypican-3 targeted human heavy chain antibody as a drug carrier for hepatocellular carcinoma therapy. Mol Pharm. 2015;12(6):2151–2157. doi:10.1021/acs.molpharmaceut.5b0013225955255
  • Tang X, Chen L, Li A, et al. Anti-GPC3 antibody-modified sorafenib-loaded nanoparticles significantly inhibited HepG2 hepatocellular carcinoma. Drug Deliv. 2018;25(1):1484–1494. doi:10.1080/10717544.2018.147785929916268
  • Wang Z, Han YJ, Huang S, et al. Imaging the expression of glypican-3 in hepatocellular carcinoma by PET. Amino Acids. 2018;50(2):309–320. doi:10.1007/s00726-017-2517-z29204748
  • Dong L, Zhou H, Zhao M, et al. Phosphorothioate-modified AP613-1 specifically targets GPC3 when used for hepatocellular carcinoma cell imaging. Mol Ther Nucleic Acids. 2018;13:376–386. doi:10.1016/j.omtn.2018.09.01330347351
  • Park JO, Stephen Z, Sun C, et al. Glypican-3 targeting of liver cancer cells using multifunctional nanoparticles. Mol Imaging. 2011;10(1):69–77.21303616
  • Wang J, Han J, Zhu C, et al. Gold nanorods/polypyrrole/m-SiO2 core/shell hybrids as drug nanocarriers for efficient chemo-photothermal therapy. Langmuir. 2018;34(48):14661–14669. doi:10.1021/acs.langmuir.8b0266730398351
  • Li J, Wu S, Zhang S. Progress in Luminescence Efficiency of Up-Conversion Nanomaterials [EB/OL]. Beijing: China Science and Technology Papers Online Available from: http://www.paper.edu.cn/releasepaper/content/201207-135 Accessed 712, 2012.
  • Xia A, Chen M, Gao Y, Wu D, Feng W, Li F. Gd3+ complex-modified NaLuF4-based upconversion nanophosphors for trimodality imaging of NIR-to-NIR upconversion luminescence, X-Ray computed tomography and magnetic resonance. Biomaterials. 2012;33(21):5394–5405. doi:10.1016/j.biomaterials.2012.04.02522560666
  • He F, Yang G, Yang P, et al. A new single 808 nm NIR light-induced imaging-guided multifunctional cancer therapy platform. Advanced Functional Materials. 2015;25(25):3966–3976. doi:10.1002/adfm.201500464
  • Kara C, Selamet H, Gokmenoglu C, Kara N. Low level laser therapy induces increased viability and proliferation in isolated cancer cells. Cell Prolif. 2018;51(2):e12417. doi:10.1111/cpr.1241729160001
  • Zhong Y, Tian G, Gu Z, et al. Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles. Adv Mater. 2014;26(18):2831–2837. doi:10.1002/adma.20130490324338994