179
Views
32
CrossRef citations to date
0
Altmetric
Original Research

Glucose oxidase complexed gold-graphene nanocomposite on a dielectric surface for glucose detection: a strategy for gestational diabetes mellitus

, , ORCID Icon, , , & show all
Pages 7851-7860 | Published online: 01 Oct 2019

References

  • Liu B, Xu Y, Zhang Y, et al. Early Diagnosis of Gestational Diabetes Mellitus (EDoGDM) study: a protocol for a prospective, longitudinal cohort study. BMJ Open. 2016;6:e012315. doi:10.1136/bmjopen-2016-012315
  • Spaight C, Gross J, Horsch A, et al. Gestational diabetes mellitus. Endocr Dev. 2016;26(suppl 1):s103–s105.
  • Berger H, Gagnon R, Sermer M, et al. Diabetes in pregnancy. J Obstet Gynaecol Can. 2016;38(7):667–679. doi:10.1016/j.jogc.2016.04.00227591352
  • Utz B, Delamou A, Belaid L, et al. Detection and management of diabetes during pregnancy in low resource settings: insights into past and present clinical practices. J Diabetes Res. 2016;3217098.27803934
  • Crowther CA, Hiller JE, Moss JR, et al. Effect of treatment of gestational diabetes mellitus on pregnancy outcomes. Obstet Gynecol Surv. 2005;352:2477–2486.
  • Diabetes P, Mellitus GD. Management of diabetes in pregnancy. Diabetes Care. 2016;38(Supplement1):S77–S79.
  • Kim NY, Adhikari KK, Dhakal R, et al. Rapid, sensitive, and reusable detection of glucose by a robust radiofrequency integrated passive device biosensor chip. Sci Rep. 2015;5:1–9.
  • Yusan S, Rahman MM, Mohamad N, et al. Development of an amperometric glucose biosensor based on the immobilization of glucose oxidase on the Se-MCM-41 mesoporous composite. J Anal Methods Chem. 2018;2687341.29862120
  • Sharma S, Huang Z, Rogers M, et al. Evaluation of a minimally invasive glucose biosensor for continuous tissue monitoring. Anal Bioanal Chem. 2016;408(29):8427–8435. doi:10.1007/s00216-016-9961-627744480
  • Zhang W, Du Y, Wang ML. Noninvasive glucose monitoring using saliva nano-biosensor. Sens Bio-Sensing Res. 2015;4:23–29. doi:10.1016/j.sbsr.2015.02.002
  • Nagasaki Y. Construction of a densely poly(ethylene glycol)-chain-tethered surface and its performance. Polym J. 2011;43:949–958. doi:10.1038/pj.2011.93
  • Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater. 2010;22:3906–3924. doi:10.1002/adma.20100106820706983
  • Kemp KC, Georgakilas V, Otyepka M, et al. Functionalization of graphene : covalent and non-covalent approaches, derivatives and applications. Chem Rev. 2012;112(11):6156–6214. doi:10.1021/cr300041223009634
  • Liu Y, Dong X, Chen P. Biological and chemical sensors based on graphene materials. Chem Soc Rev. 2012;41:2283–2307. doi:10.1039/c1cs15270j22143223
  • Kakaei K, Esrafili MD, Ehsani A. Graphene-based electrochemical supercapacitors. Interface Sci Technol. 2019;27:339–386.
  • Wang Y, Li Y, Tang L, Lu J, Li J. Application of graphene-modified electrode for selective detection of dopamine. Electrochem Commun. 2009;11(4):889–892. doi:10.1016/j.elecom.2009.02.013
  • Luo J, Jiang S, Zhang H, Jiang J, Liu X. A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode. Anal Chim Acta. 2012;709(4):47–53. doi:10.1016/j.aca.2011.10.02522122930
  • Stankovich S, Dikin DA, Dommett GHB, et al. Graphene-based composite materials. Nature. 2006;442:282–286. doi:10.1038/nature0496916855586
  • Lv Q, Wang Y, Su C, et al. Human papilloma virus DNA-biomarker analysis for cervical cancer: signal enhancement by gold nanoparticle-coupled tetravalent streptavidin-biotin strategy. Int. J. Biol. Macromol. 2019;186:336. doi:10.1016/j.exer.2019.107700
  • Lakshmipriya T, Gopinath SCB, Tang T-H. Biotin-streptavidin competition mediates sensitive detection of biomolecules in enzyme linked immunosorbent assay. PLoS One. 2016;11:e0151153. doi:10.1371/journal.pone.015115326954237
  • Lakshmipriya T, Horiguchi Y, Nagasaki Y. Co-immobilized poly(ethylene glycol)-block-polyamines promote sensitivity and restrict biofouling on gold sensor surface for detecting factor IX in human plasma. Analyst. 2014;139(16):3977–3985. doi:10.1039/C4AN00168K24922332
  • Uchida K, Otsuka H, Kaneko M, Kataoka K, Nagasaki Y. A reactive poly(ethylene glycol) layer to achieve specific surface plasmon resonance sensing with a high S/N ratio: the substantial role of a short underbrushed PEG layer in minimizing nonspecific adsorption. Anal Chem. 2005;77(4):1075–1080. doi:10.1021/ac048614015858988
  • Altintas Z. Surface plasmon resonance based sensor for the detection of glycopeptide antibiotics in milk using rationally designed nanoMIPs. Sci Rep. 2018;8:11222. doi:10.1038/s41598-018-29585-230046057
  • Gopinath SCB, Awazu K, Fujimaki M, et al. Observations of immuno-gold conjugates on influenza viruses using waveguide-mode sensors. PLoS One. 2013;8:1–10. doi:10.1371/annotation/7bb0ff7b-3527-4a42-a50a-ec81f108ac41
  • Chung E, Gao R, Ko J, et al. Trace analysis of mercury(II) ions using aptamer-modified Au/Ag core-shell nanoparticles and SERS spectroscopy in a microdroplet channel. Lab Chip. 2013;13:260–266. doi:10.1039/c3lc50269d23208150
  • Shiota M, Naya M, Yamamoto T, et al. Gold-nanofève surface-enhanced Raman spectroscopy visualizes hypotaurine as a robust anti-oxidant consumed in cancer survival. Nat Commun. 2018;9:1561.29674746
  • Brosel-Oliu S, Galyamin D, Abramova N, et al. Impedimetric label-free sensor for specific bacteria endotoxin detection by surface charge registration. Electrochim Acta. 2017;243(20):142–151. doi:10.1016/j.electacta.2017.05.060
  • Zarei SS, Soleimanian-Zad S, Ensafi AA. An impedimetric aptasensor for Shigella dysenteriae using a gold nanoparticle-modified glassy carbon electrode. Microchim Acta. 2018;185(12):538. doi:10.1007/s00604-018-3075-0
  • Gopinath SCB, Anbu P, Theivasanthi T, et al. Characterization of reduced graphene oxide obtained from vacuum-assisted low-temperature exfoliated graphite. Microsyst Technol. 2018;24(12):5007–5016. doi:10.1007/s00542-018-3921-3
  • Letchumanan I, Md Arshad MK, Balakrishnan SR, et al. Gold-nanorod enhances dielectric voltammetry detection of c-reactive protein: a predictive strategy for cardiac failure. Biosens Bioelectron. 2019;130:40–47. doi:10.1016/j.bios.2019.01.04230716591
  • Guo S, Lakshmipriya T, Gopinath SCB, et al. Complementation of ELISA with interdigitated electrode surface in gold nanoparticle functionalization for effective detection of human blood clotting defect. Nanoscale Res Lett. 2019;14:222. doi:10.1186/s11671-019-3058-z31267309
  • Perumal V, Saheed MSM, Mohamed NM, et al. Gold nanorod embedded novel 3D graphene nanocomposite for selective bio-capture in rapid detection of Mycobacterium tuberculosis. Biosens Bioelectron. 2018;116:116–122. doi:10.1016/j.bios.2018.05.04229879537
  • Zheng D, Vashist SK, Dykas MM, et al. Graphene versus multi-walled carbon nanotubes for electrochemical glucose biosensing. Materials (Basel). 2013;6(3):1011–1027. doi:10.3390/ma603101128809354
  • Letchumanan I, Gopinath SCB, Md Arshad MK, et al. Gold nano-urchin integrated label-free amperometric aptasensing human blood clotting factor IX: a prognosticative approach for “Royal disease.”. Biosens Bioelectron. 2019;131:128–135. doi:10.1016/j.bios.2019.02.00630826647
  • Wang H, Lakshmipriya T, Chen Y, et al. Squamous cell carcinoma biomarker sensing on a strontium oxide-modified interdigitated electrode surface for the diagnosis of cervical cancer. Biomed Res Int. 2019;2019:1–7. doi:10.1155/2019/8023541
  • Gray LJ, Davies MJ, Khunti K. Screening for type 2 diabetes. Controv Obes. 2014;27(supp 1):s11–s14.
  • Liu Q, Liu Y, Wu F, et al. Highly sensitive and wearable in 2 O 3 nanoribbon transistor biosensors with integrated on-chip gate for glucose monitoring in body fluids. ACS Nano. 2018;12(2):1170–1178. doi:10.1021/acsnano.7b0682329338249
  • Bollella P, Sharma S, Cass AEG, et al. Minimally invasive glucose monitoring using a highly porous gold microneedles-based biosensor: characterization and application in artificial interstitial fluid. Catalysts. 2019;9(7):580. doi:10.3390/catal9070580
  • Fatoni A, Dwiasi DW, Hermawan D. Alginate cryogel based glucose biosensor. IOP Conf Ser Mater Sci Eng. 2016;107:012010. doi:10.1088/1757-899X/107/1/012010
  • Su S, He Y, Song S, et al. A silicon nanowire-based electrochemical glucose biosensor with high electrocatalytic activity and sensitivity. Nanoscale. 2010;2:1704–1707. doi:10.1039/c0nr00314j20689869
  • Rodrigues A, Castegnaro MV, Arguello J, et al. Development and surface characterization of a glucose biosensor based on a nanocolumnar ZnO film. Appl Surf Sci. 2017;402:136–141. doi:10.1016/j.apsusc.2017.01.052
  • Yin M, Huang B, Gao S, et al. Optical fiber LPG biosensor integrated microfluidic chip for ultrasensitive glucose detection. Biomed Opt Express. 2016;7(5):2067–2077. doi:10.1364/BOE.7.00206727231643
  • Nesaei S, Song Y, Wang Y, et al. Micro additive manufacturing of glucose biosensors: a feasibility study. Anal Chim Acta. 2018;1043:142–149. doi:10.1016/j.aca.2018.09.01230392662
  • Wei A, Sun XW, Wang JX, et al. Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition. Appl Phys Lett. 2006;89:123902. doi:10.1063/1.2356307
  • Chen L, Chen L, Dotzert M, et al. Nanostructured biosensor using bioluminescence quenching technique for glucose detection. J Nanobiotechnology. 2017;15:59. doi:10.1186/s12951-017-0305-228830447
  • Norouzi P, Faridbod F, Larijani B, et al. Glucose biosensor based on MWCNTs-gold nanoparticles in a nafion film on the glassy carbon electrode using flow injection FFT continuous cyclic voltammetry. Int J Electrochem Sci. 2010;5(2010):1213–1224.
  • Wan H, Chen J, Wan C, et al. Optofluidic microcapillary biosensor for label-free, low glucose concentration detection. Biomed Opt Express. 2019;10(8):3929. doi:10.1364/BOE.10.00392931452985
  • Lopes FM, Batista KDA, Batista GLA, et al. Biosensor for determination of glucose in real samples of beverages. Food Sci Technol. 2012;32(1):65–69. doi:10.1590/S0101-20612012005000003