199
Views
27
CrossRef citations to date
0
Altmetric
Original Research

cRGD-Conjugated Fe3O4@PDA-DOX Multifunctional Nanocomposites for MRI and Antitumor Chemo-Photothermal Therapy

, , , , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 9631-9645 | Published online: 05 Dec 2019

References

  • Chen W, Zheng R, Badde PD. Cancer statistics in China. CA Cancer J Clin. 2015;2:115–132.
  • Kuipers EJ, Grady WM, Lieberman D, et al. Colorectal cancer. Nat Rev Dis Primers. 2015;1:150–165. doi:10.1038/nrdp.2015.65
  • Modest DP, Pant S, Sartore-Bianchi A. Treatment sequencing in metastatic colorectal cancer. Eur J Cancer. 2019;109:70–83. doi:10.1016/j.ejca.2018.12.01930690295
  • Clifford R, Govindarajah N, Parsons JL, et al. Systematic review of treatment intensification using novel agents for chemoradiotherapy in rectal cancer. Br J Surg. 2018;12:1553–1572. doi:10.1002/bjs.10993
  • Cousins A, Thompson SK, Wedding AB, et al. Clinical relevance of novel imaging technologies for sentinel lymph node identification and staging. Biotechnol Adv. 2014;32:269–279. doi:10.1016/j.biotechadv.2013.10.01124189095
  • Kievit FM, Zhang MQ. Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc Chem Res. 2011;10:853–862. doi:10.1021/ar2000277
  • Liu YJ, Bhattarai P, Dai ZF, et al. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem Soc Rev. 2019;48(7):2053–2108.30259015
  • Beik YJ, Abed Z, Ghoreishi FS, et al. Nanotechnology in hyperthermia cancer therapy: from fundamental principles to advanced plications. J Control Release. 2016;235:205–221. doi:10.1016/j.jconrel.2016.05.06227264551
  • Zhu X, Feng W, Chang J, et al. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nat Commun. 2016;4:10437. doi:10.1038/ncomms10437
  • Liu YX, Jia Q, Guo QW, et al. pH-activated heat shock protein inhibition and radical generation enhanced NIR luminescence imaging-guided photothermal tumour ablation. Int J Pharm. 2019;566:40–45. doi:10.3923/ijp.2019.40.4931129340
  • Gai S, Yang G, Yang P, et al. Charge convertibility and near infrared photon co-enhanced cisplatin chemotherapy based on upconversion nanoplatform. Nano Today. 2017;130:42–45.
  • Tahmasbi Rad A, Chen CW, Aresh WF, Xia Y, Lai PS, Nieh MP. Combinational effects of active targeting, shape, and enhanced permeability and retention for cancer theranostic nanocarriers. ACS Appl Mater Interfaces. 2019;11(11):10505–10519.30793580
  • Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Drug Delivery Rev. 2014;66:22–25. doi:10.1016/j.addr.2013.11.009
  • Setyawati MI, Tay CY, Chia SL, et al. Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE–cadherin. Nat Commun. 2013;4:1673. doi:10.1038/ncomms265523575677
  • Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387–6392.2946403
  • Riley RS, Day ES, Interdiscip W. Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017;9:1449–1458. doi:10.1002/wnan.1449
  • Zeng JY, Zhang MK, Peng MY, et al. Porphyrinic metal–organic frameworks coated gold nanorods as a versatile nanoplatform for combined photodynamic/photothermal/chemotheory of tumor. Adv Funct Mater. 2018;20:1705451. doi:10.1002/adfm.201705451
  • Guo Z, Zhu S, Yong Y, et al. Synthesis of BSA-coated BiOI@Bi2 S3 semiconductor heterojunction nanoparticles and their applications for radio/photodynamic/photothermal synergistic therapy of tumor. Adv Mater. 2017;20:1704136. doi:10.1002/adma.201704136
  • Xing Y, Zhang J, Chen F, et al. Mesoporous polydopamine nanoparticles with co-delivery function for overcoming multidrug resistance via synergistic chemo-photothermal therapy. Nanoscale. 2017;9:8781–8790. doi:10.1039/C7NR01857F28621774
  • Xu X, Wang J, Wang Y, et al. Formation of graphene oxide-hybridized nanogels for combinative anticancer therapy. Nanomedicine. 2018;14:2387–2395. doi:10.1016/j.nano.2017.05.00728552643
  • Liu Y, Zhi X, Yang M, et al. Tumor-triggered drug release from calcium carbonate-encapsulated gold nanostars for near-infrared photodynamic/photothermal combination antitumor therapy. Theranostics. 2017;7:1650–1662. doi:10.7150/thno.1760228529642
  • Goodman AM, Neumann O, Norregaard K, Henderson L. Near-infrared remotely triggered drug-release strategies for cancer treatment. Acad Sci U S A. 2017;114:12419–12424. doi:10.1073/pnas.1713137114
  • Liu Y, Jia Q, Guo Q, et al. Simultaneously activating highly selective ratiometric MRI and synergistic therapy in response to intratumoral oxidability and acidity. Biomaterials. 2018;180:104–116. doi:10.1016/j.biomaterials.2018.07.02530032045
  • Chu M, Shao Y, Peng J. Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles. Biomaterials. 2013;16:4078–4088. doi:10.1016/j.biomaterials.2013.01.086
  • Ao L, Wu C, Liu K. Polydopamine derivated hierarchical nanoplatform for efficient dual-modal imaging guided combination in vivo cancer therapy. ACS Appl Mater Interfaces. 2018;10:12544–12552. doi:10.1021/acsami.8b0297329569431
  • Wang X, Zhang J, Wang Y. Multi-responsive photothermal-chemotherapy with drug-loaded melanin-like nanoparticles for synergetic tumor ablation. Biomaterials. 2015;81:114–124. doi:10.1016/j.biomaterials.2015.11.03726731575
  • Liu YX, Guo QW, Zhu XJ, et al. Optimization of prussian blue coated NaDyF4: x%Lu nanocomposites for multifunctional imaging-guided photothermal therapy. Adv Funct Mater. 2016;26:5120–5130. doi:10.1002/adfm.v26.28
  • Harisinghani MG, Barentsz J, Hahn PF. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med. 2013;348:2491–2499. doi:10.1056/NEJMoa022749
  • Heilmaier C, Lutz AM, Bolog N, et al. Focal liver lesions: detection and characterization at double-contrast liver MR imaging with ferucarbotran and gadobutrol versus single-contrast liver MR imaging. Radiology. 2019;253:724–733. doi:10.1148/radiol.2533090161
  • Seeney CE. The emerging applications of magnetic nanovectors in nanomedicine. Pharm Pat Anal. 2015;4:285–304. doi:10.4155/ppa.15.1726174567
  • Heilmaier C, Ruiz A, Gutiérrez L, et al. Biotransformation of magnetic nanoparticles as a function of coating in a rat model. Nanoscale. 2015;7:16321–16329. doi:10.1039/C5NR03780H26381991
  • Kolosnjaj-Tabi J, Lartigue L, Javed Y, et al. Biotransformations of magnetic nanoparticles in the body. Nano Today. 2016;11:280–284. doi:10.1016/j.nantod.2015.10.001
  • Liu Y, Ai K, Liu J, et al. Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv Mater. 2013;25:1353–1359. doi:10.1002/adma.v25.923280690
  • Hak-Sung J, Kyung-Jin C, Yeonee S. Polydopamine encapsulation of fluorescent nanodiamonds for biomedical applications. Adv Funct Mater. 2018;28:1801252. doi:10.1002/adfm.20180125230686957
  • Barandov A, Bartelle BB, Gonzalez BA, et al. Membrane-permeble Mn(III) complexes for molecular magnetic resonance imaging of intracellular targets. J Am Chem Soc. 2016;138:5483–5486. doi:10.1021/jacs.5b1333727088782
  • Teo PY, Cheng W, Hedrick JL, et al. Co-delivery of drugs and plasmid DNA for cancer therapy. Adv Drug Deliv Rev. 2016;98:41–63. doi:10.1016/j.addr.2015.10.01426529199
  • Zheng R, Wang S, Tian Y, et al. Polydopamine-coated magnetic composite particles with enhanced photothermal effect. CS Appl Mater Interfaces. 2015;7:15876–15884. doi:10.1021/acsami.5b03201
  • Cao L, Du P, Jiang S, et al. Enhancement of antitumor properties of TRAIL by targeted delivery to the tumor neovasculature. Mol Cancer Ther. 2008;7:851–861. doi:10.1158/1535-7163.MCT-07-053318413798
  • Zhi S, Lin Y, Zhang X, et al. Cyclic RGD peptide-modified liposomal drug delivery system for targeted oral apatinib administration: enhanced cellular uptake and improved therapeutic effects. Int J Nanomedicine. 2017;12:1941–1958. doi:10.2147/IJN.S12557328331317
  • Koivunen E, Wang B, Ruoslahti E. Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins. Biotechnology. 1995;13:265–270. doi:10.1038/nbt0395-2659634769
  • Assa-Munt N 1, Jia X, Laakkonen P, et al. Solution structures and integrin binding activities of an RGD peptide with two isomers. Biochemistry. 2001;40:2373–2378. doi:10.1021/bi002101f11327857
  • Burkhart DJ, Kalet BT, Coleman MP. Doxorubicin-formaldehyde conjugates targeting alphavbeta3 integrin. Mol Cancer Ther. 2004;3:1593–1604.15634653
  • Kolhar P, Kotamraju VR, Hikita ST, et al. Synthetic surfaces for human embryonic stem cell culture. J Biotechnol. 2010;146:143–146. doi:10.1016/j.jbiotec.2010.01.01620132848