167
Views
20
CrossRef citations to date
0
Altmetric
Original Research

Novel Aptamer-Functionalized Nanoparticles Enhances Bone Defect Repair By Improving Stem Cell Recruitment

, , , , , & show all
Pages 8707-8724 | Published online: 06 Nov 2019

References

  • Downey MW, Lai TC, Fleming JJ. Primary arthrodesis in severely comminuted fractures. Clin Podiatr Med Surg. 2018;35(2):233–257. doi:10.1016/j.cpm.2017.12.00629482792
  • Ratajczak K, Szczesny G, Maldyk P. Comminuted fractures of the proximal humerus - principles of the diagnosis, treatment and rehabilitation. Ortop Traumatol Rehabil. 2019;21(2):77–93. doi:10.5604/01.3001.0013.154431180034
  • Zura R, Braid-Forbes MJ, Jeray K, et al. Bone fracture nonunion rate decreases with increasing age: a prospective inception cohort study. Bone. 2017;95:26–32. doi:10.1016/j.bone.2016.11.00627836732
  • Ding L, He Z, Xiao H, Chai L, Xue F. Factors affecting the incidence of aseptic nonunion after surgical fixation of humeral diaphyseal fracture. J Orthop Sci. 2014;19(6):973–977. doi:10.1007/s00776-014-0640-125196794
  • Fong K, Truong V, Foote CJ, et al. Predictors of nonunion and reoperation in patients with fractures of the tibia: an observational study. BMC Musculoskelet Disord. 2013;14:103. doi:10.1186/1471-2474-14-10323517574
  • Filipowska J, Tomaszewski KA, Niedźwiedzki Ł, Walocha JA, Niedźwiedzki T. The role of vasculature in bone development, regeneration and proper systemic functioning. Angiogenesis. 2017;20(3):291–302. doi:10.1007/s10456-017-9541-128194536
  • Trickett RW. Letter to the editor Re: the use of dorsal distraction plating for severely comminuted distal radius fractures: a review and comparison to volar plate fixation by R. Perlusa, J. Doyona and P. Henryb. Injury. 2019. doi:10.1016/j.injury.2019.05.013
  • Perlus R, Doyon J, Henry P. The use of dorsal distraction plating for severely comminuted distal radius fractures: a review and comparison to volar plate fixation. Injury. 2019;50(Suppl 1):S50–S55. doi:10.1016/j.injury.2019.03.05231040029
  • Sgromolo NM, Rhee PC. The role of vascularized bone grafting in scaphoid nonunion. Hand Clin. 2019;35(3):315–322. doi:10.1016/j.hcl.2019.03.00431178089
  • Mortada I, Mortada R. Epigenetic changes in mesenchymal stem cells differentiation. Eur J Med Genet. 2018;61(2):114–118. doi:10.1016/j.ejmg.2017.10.01529079547
  • Huang J, Lu W, Ouyang H, et al. Transplantation of mesenchymal stem cells attenuates pulmonary hypertension by normalizing the EndMT. Am J Respir Cell Mol Biol. 2019. doi:10.1165/rcmb.2018-0165OC
  • Scheper V, Schwieger J, Hamm A, Lenarz T, Hoffmann A. BDNF-overexpressing human mesenchymal stem cells mediate increased neuronal protection in vitro. J Neurosci Res. 2019;97:1414–1429. doi:10.1002/jnr.v97.1131257632
  • Moshrefi M, Yari N, Nabipour F, Bazrafshani MR, Nematollahi-Mahani SN. Transplantation of differentiated umbilical cord mesenchymal cells under kidney capsule for control of type I diabetes in rat. Tissue Cell. 2015;47(4):395–405. doi:10.1016/j.tice.2015.04.00826025422
  • Stiner R, Alexander M, Liu G, et al. Transplantation of stem cells from umbilical cord blood as therapy for type I diabetes. Cell Tissue Res. 2019. doi:10.1007/s00441-019-03046-2
  • Zhang B, Zhao N, Zhang J, Liu Y, Zhu D, Kong Y. Mesenchymal stem cells rejuvenate cardiac muscle through regulating macrophage polarization. Aging (Albany NY). 2019;11(12):3900–3908. doi:10.18632/aging.10200931212255
  • Barcak EA, Beebe MJ. Bone morphogenetic protein: is there still a role in orthopedic trauma in 2017? Orthop Clin North Am. 2017;48(3):301–309. doi:10.1016/j.ocl.2017.03.00428577779
  • Venkatesan J, Bhatnagar I, Manivasagan P, Kang K-H, Kim S-K. Alginate composites for bone tissue engineering: a review. Int J Biol Macromol. 2015;72:269–281. doi:10.1016/j.ijbiomac.2014.07.00825020082
  • Chen W, Sun Y, Gu X, et al. Conditioned medium of mesenchymal stem cells delays osteoarthritis progression in a rat model by protecting subchondral bone, maintaining matrix homeostasis, and enhancing autophagy. J Tissue Eng Regen Med. 2019. doi:10.1002/term.v13.9
  • Moccia F, Riccardi C, Musumeci D, et al. Insights into the G-rich VEGF-binding aptamer V7t1: when two G-quadruplexes are better than one! Nucleic Acids Res. 2019. doi:10.1093/nar/gkz589
  • Chen K, Fu T, Sun W, et al. DNA-supramolecule conjugates in theranostics. Theranostics. 2019;9(11):3262–3279. doi:10.7150/thno.3188531244953
  • Ali MH, Elsherbiny ME, Emara M. Updates on aptamer research. Int J Mol Sci. 2019;20:10. doi:10.3390/ijms20102511
  • Esposito CL, Catuogno S, Condorelli G, Ungaro P, de Franciscis V. Aptamer chimeras for therapeutic delivery: the challenging perspectives. Genes (Basel). 2018;9:11. doi:10.3390/genes9110529
  • Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature. 1992;355(6360):564–566. doi:10.1038/355564a01741036
  • Qin Y, Yang X, Zhang J, Cao X. Target capturing performance of microfluidic channel surface immobilized aptamers: the effects of spacer lengths. Biomed Microdevices. 2019;21(3):54. doi:10.1007/s10544-019-0403-z31203429
  • Abate MF, Jia S, Ahmed MG, et al. Visual quantitative detection of circulating tumor cells with single-cell sensitivity using a portable microfluidic device. Small. 2019;15(14):e1804890. doi:10.1002/smll.v15.1430821107
  • Li F, Hu S, Zhang R, Gu Y, Li Y, Jia Y. Porous graphene oxide enhanced aptamer specific circulating-tumor-cell sensing interface on light addressable potentiometric sensor: clinical application and simulation. ACS Appl Mater Interfaces. 2019;11(9):8704–8709. doi:10.1021/acsami.8b2110130762335
  • Wu H, Wang M, Dai B, et al. Novel CD123-aptamer-originated targeted drug trains for selectively delivering cytotoxic agent to tumor cells in acute myeloid leukemia theranostics. Drug Deliv. 2017;24(1):1216–1229. doi:10.1080/10717544.2017.136797628845698
  • Dimitriou R, Tsiridis E, Giannoudis PV. Current concepts of molecular aspects of bone healing. Injury. 2005;36(12):1392–1404. doi:10.1016/j.injury.2005.07.01916102764
  • Shrivats AR, McDermott MC, Hollinger JO. Bone tissue engineering: state of the union. Drug Discov Today. 2014;19(6):781–786. doi:10.1016/j.drudis.2014.04.01024768619
  • Alierta JA, Pérez MA, Seral B, García-Aznar JM. Biomechanical assessment and clinical analysis of different intramedullary nailing systems for oblique fractures. Comput Methods Biomech Biomed Engin. 2016;19(12):1266–1277. doi:10.1080/10255842.2015.112547326712100
  • Xavier JR, Thakur T, Desai P, et al. Bioactive nanoengineered hydrogels for bone tissue engineering: a growth-factor-free approach. ACS Nano. 2015;9(3):3109–3118. doi:10.1021/nn507488s25674809
  • Li C, Gerhart LM, Harrison SP, Ward JK, Harris JM, Prentice IC. RhBMP-2 loaded 3D-printed mesoporous silica/calcium phosphate cement porous scaffolds with enhanced vascularization and osteogenesis properties. Sci Rep. 2017;7:41331. doi:10.1038/srep4308728128363
  • Kieser DC, Ailabouni R, Kieser SCJ, et al. The use of an Ossis custom 3D-printed tri-flanged acetabular implant for major bone loss: minimum 2-year follow-up. Hip Int. 2018;28(6):668–674. doi:10.1177/112070001876081729783895
  • Zura R, Mehta S, Rocca GJD et al. A cohort study of 4,190 patients treated with low-intensity pulsed ultrasound (LIPUS): findings in the elderly versus all patients. BMC Musculoskelet Disord. 2015;16:45.25886761
  • Higgins A, Glover M, Yang Y, Bayliss S, Meads C, Lord J. EXOGEN ultrasound bone healing system for long bone fractures with non-union or delayed healing: a NICE medical technology guidance. Appl Health Econ Health Policy. 2014;12(5):477–484. doi:10.1007/s40258-014-0117-625060830
  • Slette EL, Mikula JD, Turnbull TL, Hackett TR. Treatment of Midshaft Clavicle fractures: application of local autograft with concurrent plate fixation. Arthrosc Tech. 2016;5(3):e557–e562. doi:10.1016/j.eats.2016.02.00827656378
  • Radcliff K, Hwang R, Hilibrand A, et al. The effect of iliac crest autograft on the outcome of fusion in the setting of degenerative spondylolisthesis: a subgroup analysis of the Spine Patient Outcomes Research Trial (SPORT). J Bone Joint Surg Am. 2012;94(18):1685–1692. doi:10.2106/JBJS.K.0095222878599
  • Makino T, Hak DJ, Hazelwood SJ, Curtiss S, Reddi AH. Prevention of atrophic nonunion development by recombinant human bone morphogenetic protein-7. J Orthop Res. 2005;23(3):632–638. doi:10.1016/j.orthres.2004.09.00915885485
  • Kruyt M, De Bruijn J, Rouwkema J, et al. Analysis of the dynamics of bone formation, effect of cell seeding density, and potential of allogeneic cells in cell-based bone tissue engineering in goats. Tissue Eng Part A. 2008;14(6):1081–1088. doi:10.1089/ten.tea.2007.011118558815
  • Wang X, Song X, Li T et al. Aptamer-functionalized bioscaffold enhances cartilage repair by improving stem cell recruitment in osteochondral defects of rabbit knees. Am J Sports Med. 2019:47(10);363546519856355.
  • Hu X, Qu Y, Gupta TD, et al. A difunctional regeneration scaffold for knee repair based on aptamer-directed cell recruitment. Adv Mater. 2017;29:15. doi:10.1002/adma.201700681
  • Hou Z, Meyer S, Propson NE, et al. Characterization and target identification of a DNA aptamer that labels pluripotent stem cells. Cell Res. 2015;25(3):390–393. doi:10.1038/cr.2015.725591927