136
Views
11
CrossRef citations to date
0
Altmetric
Original Research

Vitamin K1 As A Potential Molecule For Reducing Single-Walled Carbon Nanotubes-Stimulated α-Synuclein Structural Changes And Cytotoxicity

, , , , ORCID Icon, , , , , , ORCID Icon, ORCID Icon & show all
Pages 8433-8444 | Published online: 24 Oct 2019

References

  • Butnaru D, Chapman J. The impact of self-replicating proteins on inflammation, autoimmunity and neurodegeneration—an untraveled path. Autoimmun Rev. 2019. doi:10.1016/j.autrev.2018.09.009
  • Mohseni-Dargah M, Akbari-Birgani S, Madadi Z, Saghatchi F, Kaboudin B. Carbon nanotube-delivered iC9 suicide gene therapy for killing breast cancer cells in vitro. Nanomedicine 2019;14(8):1033–1047.
  • Tagmatarchis N, Prato M. Functionalization of carbon nanotubes via 1, 3-dipolar cycloadditions. J Mater Chem. 2004;14(4):437–439. doi:10.1039/b314039c
  • Ali-Boucetta H, Kostarelos K. Pharmacology of carbon nanotubes: toxicokinetics, excretion and tissue accumulation. Adv Drug Del Rev. 2013;65(15):2111–2119. doi:10.1016/j.addr.2013.10.004
  • Zhao X, Lu D, Hao F, Liu R. Exploring the diameter and surface dependent conformational changes in carbon nanotube-protein corona and the related cytotoxicity. J Hazard Mater. 2015;292:98–107. doi:10.1016/j.jhazmat.2015.03.02325797928
  • Zhao X, Hao F, Lu D, Liu W, Zhou Q, Jiang G. Influence of the surface functional group density on the carbon-nanotube-induced α-chymotrypsin structure and activity alterations. ACS Appl Mater Interfaces. 2015;7(33):18880–18890. doi:10.1021/acsami.5b0589526248557
  • Bussy C, Al-Jamal KT, Boczkowski J, et al. Microglia determine brain region-specific neurotoxic responses to chemically functionalized carbon nanotubes. ACS Nano. 2015;9(8):7815–7830. doi:10.1021/acsnano.5b0235826043308
  • Migliore L, Uboldi C, Di Bucchianico S, Coppedè F. Nanomaterials and neurodegeneration. Environ Mol Mutagen. 2015;56(2):149–170. doi:10.1002/em.2193125627719
  • Costa PM, Bourgognon M, Wang JT, Al-Jamal KT. Functionalised carbon nanotubes: from intracellular uptake and cell-related toxicity to systemic brain delivery. J Control Release. 2016;241:200–219. doi:10.1016/j.jconrel.2016.09.03327693751
  • Kafa H, Wang JT-W, Rubio N, et al. Translocation of LRP1 targeted carbon nanotubes of different diameters across the blood–brain barrier in vitro and in vivo. J Control Release. 2016;225:217–225. doi:10.1016/j.jconrel.2016.01.03126809004
  • Luo J, Wärmländer SKTS, Yu C-H, Muhammad K, Gräslund A, Pieter Abrahams J. The Aβ peptide forms non-amyloid fibrils in the presence of carbon nanotubes. Nanoscale. 2014;6(12):6720–6726. doi:10.1039/c4nr00291a24820873
  • Park M, Park J, Lee J, Ju S-Y. Scaling of binding affinities and cooperativities of surfactants on carbon nanotubes. Carbon. 2018;139:427–436. doi:10.1016/j.carbon.2018.07.003
  • Allegri M, Perivoliotis DK, Bianchi MG, et al. Toxicity determinants of multi-walled carbon nanotubes: the relationship between functionalization and agglomeration. Toxicol Rep. 2016;3:230–243. doi:10.1016/j.toxrep.2016.01.01128959543
  • Zeinabad HA, Zarrabian A, Saboury AA, Alizadeh AM, Falahati M. Interaction of single and multi wall carbon nanotubes with the biological systems: tau protein and PC12 cells as targets. Sci Rep. 2016;6:26508–26518. doi:10.1038/srep2650827216374
  • Li C, Mezzenga R. The interplay between carbon nanomaterials and amyloid fibrils in bio-nanotechnology. Nanoscale. 2013;5(14):6207–6218. doi:10.1039/c3nr01644g23744243
  • Liu F, Wang W, Sang J, Jia L, Lu F. Hydroxylated single-walled carbon nanotubes inhibit aβ42 fibrillogenesis, disaggregate mature fibrils, and protect against Aβ42-induced cytotoxicity. ACS Chem Neurosci. 2019;10(1):588–598. doi:10.1021/acschemneuro.8b0044130335950
  • Marques O, Outeiro TF. Alpha-synuclein: from secretion to dysfunction and death. Cell Death Dis. 2012;3:350–360. doi:10.1038/cddis.2012.94
  • Wales P, Pinho R, Lázaro DF, Outeiro TF. Limelight on alpha-synuclein: pathological and mechanistic implications in neurodegeneration. J Parkinsons Dis. 2013;3(4):415–459. doi:10.3233/JPD-13021624270242
  • Valdinocci D, Radford RAW, Siow SM, Chung RS, Pountney DL. Potential modes of intercellular α-synuclein transmission. Int J Mol Sci. 2017;18(2):469–480. doi:10.3390/ijms18020469
  • Book A, Guella I, Candido T, et al. A meta-analysis of α-Synuclein multiplication in familial parkinsonism. Front Neurol. 2018;9:1–10. doi:10.3389/fneur.2018.0000129403429
  • Brundin P, Dave KD, Kordower JH. Therapeutic approaches to target alpha-synuclein pathology. Exp Neurol. 2017;298:225–235. doi:10.1016/j.expneurol.2017.10.00328987463
  • Alarcón-Arís D, Recasens A, Galofré M, et al. Selective α-synuclein knockdown in monoamine neurons by intranasal oligonucleotide delivery: potential therapy for parkinson’s disease. Mol Ther. 2018;26(2):550–567. doi:10.1016/j.ymthe.2017.11.01529273501
  • Pujols J, Peña-Díaz S, Lázaro DF, et al. Small molecule inhibits α-synuclein aggregation, disrupts amyloid fibrils, and prevents degeneration of dopaminergic neurons. Proc Natl Acad Sci. 2018;115(41):10481–10486. doi:10.1073/pnas.180419811530249646
  • Li J, Zhu M, Rajamani S, Uversky VN, Fink AL, Inhibits R. α-synuclein fibrillation and disaggregates fibrils. Chem Biol. 2004;11(11):1513–1521. doi:10.1016/j.chembiol.2004.08.02515556002
  • Li H-T, Lin D-H, Luo X-Y, et al. Inhibition of α-synuclein fibrillization by dopamine analogs via reaction with the amino groups of α-synuclein. Febs J. 2005;272(14):3661–3672. doi:10.1111/j.1742-4658.2005.04792.x16008565
  • Zhu M, Han S, Fink AL. Oxidized quercetin inhibits α-synuclein fibrillization. Biochimi Et Biophys Acta. 2013;1830(4):2872–2881. doi:10.1016/j.bbagen.2012.12.027
  • da Silva FL, Coelho Cerqueira E, de Freitas MS, Gonçalves DL, Costa LT, Follmer C. Vitamins K interact with N-terminus α-synuclein and modulate the protein fibrillization in vitro. Exploring the interaction between quinones and α-synuclein. Neurochem Int. 2013;62(1):103–112. doi:10.1016/j.neuint.2012.10.00123064431
  • Ardah MT, Paleologou KE, Lv G, et al. Structure activity relationship of phenolic acid inhibitors of α-synuclein fibril formation and toxicity. Front Aging Neurosci. 2014;6(197):1–10. doi:10.3389/fnagi.2014.0000124478697
  • McGlinchey RP, Lee JC. Cysteine cathepsins are essential in lysosomal degradation of α-synuclein. Proc Natl Acad Sci. 2015;112(30):9322–9327. doi:10.1073/pnas.150093711226170293
  • Jha NN, Ghosh D, Das S, et al. Effect of curcumin analogs onα-synuclein aggregation and cytotoxicity. Sci Rep. 2016;6:28511–28520. doi:10.1038/srep2851127338805
  • Alam P, Chaturvedi SK, Siddiqi MK, et al. Vitamin k3 inhibits protein aggregation: implication in the treatment of amyloid diseases. Sci Rep. 2016;6:26759–26765. doi:10.1038/srep2675927230476
  • Hadden MK, Hill SA, Davenport J, Matts RL, Blagg BS. Synthesis and evaluation of Hsp90 inhibitors that contain the 1, 4-naphthoquinone scaffold. Biorg Med Chem. 2009;17(2):634–640. doi:10.1016/j.bmc.2008.11.064
  • Cerqueira EC, Netz PA, Diniz C, do Canto VP, Follmer C. Molecular insights into human monoamine oxidase (MAO) inhibition by 1, 4-naphthoquinone: evidences for menadione (vitamin K3) acting as a competitive and reversible inhibitor of MAO. Biorg Med Chem. 2011;19(24):7416–7424. doi:10.1016/j.bmc.2011.10.049
  • Ritchie DW, Venkatraman V. Ultra-fast FFT protein docking on graphics processors. Bioinformatics. 2010;26(19):2398–2405. doi:10.1093/bioinformatics/btq44420685958
  • Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform. 2012;4(1):17–25. doi:10.1186/1758-2946-4-1722889332
  • Mayo SL, Olafson BD, Goddard WA. Dreiding—A generic force-field for molecular simulations. J Phys Chem. 1990;94:8897–8909. doi:10.1021/j100389a010
  • Mahdavimehr M, Meratan AA, Ghobeh M, Ghasemi A, Saboury AA, Nemat-Gorgani M. Inhibition of HEWL fibril formation by taxifolin: mechanism of action. PLoS One. 2017;12(11):0187841–0187845. doi:10.1371/journal.pone.0187841
  • Breydo L, Wu JW, Uversky VN. α-Synuclein misfolding and Parkinson’s disease. Biochim Biophys Acta Mol Basis Dis. 2012;1822(2):261–285. doi:10.1016/j.bbadis.2011.10.002
  • Wan OW, Chung KK. The role of alpha-synuclein oligomerization and aggregation in cellular and animal models of Parkinson’s disease. PLoS One. 2012;7(6):38545–38554. doi:10.1371/journal.pone.0038545
  • Cavallo D, Fanizza C, Ursini CL, et al. Multi-walled carbon nanotubes induce cytotoxicity and genotoxicity in human lung epithelial cells. J Appl Toxicol. 2012;32(6):454–464. doi:10.1002/jat.271122271384
  • Avti PK, Caparelli ED, Sitharaman B. Cytotoxicity, cytocompatibility, cell-labeling efficiency, and in vitro cellular magnetic resonance imaging of gadolinium-catalyzed single-walled carbon nanotubes. J Biomed Mater Res A. 2013;101(12):3580–3591. doi:10.1002/jbm.a.3464323686792
  • Yu IJ. Single-Wall Carbon Nanotubes (SWCNT) Induce Cytotoxicity and Genotoxicity Produced by Reactive Oxygen Species (ROS) Generation in Phytohemagglutinin (PHA)-stimulated male human peripheral blood lymphocytes AU - Kim, Jin Sik. J Toxicol Environ Health A. 2014;77(19):1141–1153. doi:10.1080/15287394.2014.91706225119736
  • Pichardo S, Gutiérrez-Praena D, Puerto M, et al. Oxidative stress responses to carboxylic acid functionalized single wall carbon nanotubes on the human intestinal cell line Caco-2. Toxicol In Vitro. 2012;26(5):672–677. doi:10.1016/j.tiv.2012.03.00722449549
  • Toyokuni S, Jiang LI, Kitaura R, Shinohara H. Minimal inflammogenicity of pristine single-wall carbon nanotubes. Nagoya J Med Sci. 2015;77(1–2):195–202.25797984
  • Syama S, Mohanan PV. Safety and biocompatibility of graphene: A new generation nanomaterial for biomedical application. Int J Biol Macromol. 2016;86:546–555. doi:10.1016/j.ijbiomac.2016.01.11626851208
  • Ge C, Du J, Zhao L, et al. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci USA. 2011;108(41):16968–16973. doi:10.1073/pnas.110527010821969544
  • Ebrahim-Habibi MB, Ghobeh M, Mahyari FA, Rafii-Tabar H, Sasanpour P. An investigation into non-covalent functionalization of a single-walled carbon nanotube and a graphene sheet with protein G: A combined experimental and molecular dynamics study. Scientific Reports. 2019;9(1):1273.30718580
  • Raghavendra AJ, Fritz K, Fu S, Brown JM, Podila R, Shannahan JH. Variations in biocorona formation related to defects in the structure of single walled carbon nanotubes and the hyperlipidemic disease state. Sci Rep. 2017;7(1):8382–8390. doi:10.1038/s41598-017-08896-w28814800
  • Du P, Zhao J, Mashayekhi H, Xing B. Adsorption of bovine serum albumin and lysozyme on functionalized carbon nanotubes. J Phys Chem C. 2014;118(38):22249–22257. doi:10.1021/jp5044943
  • Xie L, Lin D, Luo Y, Li H, Yang X, Wei G. Effects of hydroxylated carbon nanotubes on the aggregation of Aβ16–22 peptides: a combined simulation and experimental study. Biophys J. 2014;107(8):1930–1938. doi:10.1016/j.bpj.2014.08.03425418174
  • Li H, Luo Y, Derreumaux P, Wei G. Carbon nanotube inhibits the formation of β-sheet-rich oligomers of the Alzheimer’s amyloid-β (16–22) peptide. Biophys J. 2011;101(9):2267–2276. doi:10.1016/j.bpj.2011.09.04622067167
  • Jana AK, Sengupta N. Adsorption mechanism and collapse propensities of the full-length, monomeric Aβ1–42 on the surface of a single-walled carbon nanotube: a molecular dynamics simulation study. Biophys J. 2012;102(8):1889–1896. doi:10.1016/j.bpj.2012.03.03622768945
  • Mohammadi S, Nikkhah M, Hosseinkhani S. Investigation of the effects of carbon-based nanomaterials on A53T alpha-synuclein aggregation using a whole-cell recombinant biosensor. Int J Nanomedicine. 2017;12:8831–8840. doi:10.2147/IJN.S14476429276384
  • Pang R, Li M, Zhang C. Degradation of phenolic compounds by laccase immobilized on carbon nanomaterials: diffusional limitation investigation. Talanta. 2015;131:38–45. doi:10.1016/j.talanta.2014.07.04525281070
  • Shvedova AA, Kisin ER, Murray AR, et al. Vitamin E deficiency enhances pulmonary inflammatory response and oxidative stress induced by single-walled carbon nanotubes in C57BL/6 mice. Toxicol Appl Pharmacol. 2007;221(3):339–348. doi:10.1016/j.taap.2007.03.01817482224
  • Singh RP, Sharma G, Sonali, et al. Vitamin E TPGS conjugated carbon nanotubes improved efficacy of docetaxel with safety for lung cancer treatment. Colloids Surf B Biointerfaces. 141;2016:429–442. doi:10.1016/j.colsurfb.2016.02.01126895505
  • Ono K, Yamada M. Vitamin A potently destabilizes preformed α-synuclein fibrils in vitro: implications for Lewy body diseases. Neurobiol Dis. 2007;25(2):446–454. doi:10.1016/j.nbd.2006.10.01017169566
  • Yoosefian M, Jahani M. A molecular study on drug delivery system based on carbon nanotube for the novel norepinephrine prodrug, Droxidopa. J Mol Liq. 2019;15(284):258–264. doi:10.1016/j.molliq.2019.04.016
  • Yoosefian M, Rahmanifar E, Etminan N. Nanocarrier for levodopa Parkinson therapeutic drug; comprehensive benserazide analysis. Artif Cells Nanomed Biotechnol. 2018;46(sup1):434–446. doi:10.1080/21691401.2018.143058329378432
  • Yoosefian M, Pakpour A, Etminan N. Nanofilter platform based on functionalized carbon nanotubes for adsorption and elimination of Acrolein, a toxicant in cigarette smoke. Appl Surf Sci. 2018;444:598–603. doi:10.1016/j.apsusc.2018.03.108
  • Yoosefian M, Etminan N. Leucine/Pd-loaded (5, 5) single-walled carbon nanotube matrix as a novel nanobiosensors for in silico detection of protein. Amino Acids. 2018;50(6):653–661. doi:10.1007/s00726-018-2552-429536267
  • Yoosefian M. A high efficient nanostructured filter based on functionalized carbon nanotube to reduce the tobacco-specific nitrosamines, NNK. Appl Surf Sci. 2018;15(434):134–141. doi:10.1016/j.apsusc.2017.10.166
  • Yoosefian M, Etminan N. The role of solvent polarity in the electronic properties, stability and reactivity trend of a tryptophane/Pd doped SWCNT novel nanobiosensor from polar protic to non-polar solvents. RSC Adv. 2016;6(69):64818–64825. doi:10.1039/C6RA14006H