153
Views
11
CrossRef citations to date
0
Altmetric
Original Research

Variable Effects Of LDL Subclasses Of Cholesterol On Endothelial Nitric Oxide/Peroxynitrite Balance – The Risks And Clinical Implications For Cardiovascular Disease

ORCID Icon & ORCID Icon
Pages 8973-8987 | Published online: 18 Nov 2019

References

  • Sachdeva A, Cannon CP, Deedwania PC, et al. Lipid levels in patients hospitalized with coronary artery disease: an analysis of 136,905 hospitalizations in get with the guidelines. Am Heart J. 2009;157(1):111–117.19081406
  • Nishikura T, Koba S, Yokota Y, et al. Elevated small dense low-density lipoprotein cholesterol as a predictor for future cardiovascular events in patients with stable coronary artery disease. J Atheroscler Thromb. 2014;21:755–767. doi:10.5551/jat.2346524717762
  • Hoogeveen RC, Gaubatz JW, Sun W, et al. Small dense low-density lipoprotein-cholesterol concentrations predict risk for coronary heart disease: the atherosclerosis risk in communities (aric) study. Arterioscler Thromb Vasc Biol. 2014;34:1069–1077. doi:10.1161/ATVBAHA.114.30328424558110
  • Austin MA. Small, dense low-density-lipoprotein as a risk factor for coronary heart-disease. Int J Clin Lab Res. 1994;24:187–192. doi:10.1007/BF025924607894041
  • Blake GJ. Low-density lipoprotein particle concentration and size as determined by nuclear magnetic resonance spectroscopy as predictors of cardiovascular disease in women. Circulation. 2002;106:1930–1937. doi:10.1161/01.cir.0000033222.75187.b912370215
  • Yee MS, Pavitt DV, Tan T, et al. Lipoprotein separation in a novel iodixanol density gradient, for composition, density, and phenotype analysis. J Lipid Res. 2008;49:1364–1371. doi:10.1194/jlr.D700044-JLR20018337616
  • Campos H, Genest JJ, Blijlevens E, et al. Low density lipoprotein particle size and coronary artery disease. Arterioscler Thromb Vasc Biol. 1992;12:187–195. doi:10.1161/01.ATV.12.2.187
  • Austin MA, Breslow JL, Hennekens CH, Buring JE, Willett WC, Krauss RM. Low-density lipoprotein subclass patterns and risk of myocardial infarction. JAMA. 1988;260:1917–1921.3418853
  • Griffin BA, Caslake MJ, Yip B, Tait GW, Packard CJ, Shepherd J. Rapid isolation of low density lipoprotein (ldl) subfractions from plasma by density gradient ultracentrifugation. Atherosclerosis. 1990;83:59–67. doi:10.1016/0021-9150(90)90131-22390137
  • Pritchard KA, Groszek L, Smalley DM, et al. Native low-density lipoprotein increases endothelial cell nitric oxide synthase generation of superoxide anion. Circ Res. 1995;77:510–518. doi:10.1161/01.res.77.3.5107543827
  • Apostolov EO, Shah SV, Ok E, Basnakian AG. Carbamylated low-density lipoprotein induces monocyte adhesion to endothelial cells through intercellular adhesion molecule-1 and vascular cell adhesion molecule-1. Arterioscler Thromb Vasc Biol. 2007;27:826–832. doi:10.1161/01.ATV.0000258795.75121.8a17255534
  • O’Byrne D, Devaraj S, Islam KN, et al. Low-density lipoprotein (ldl)-induced monocyte-endothelial cell adhesion, soluble cell adhesion molecules, and autoantibodies to oxidized-ldl in chronic renal failure patients on dialysis therapy. Metabolism. 2001;50:207–215. doi:10.1053/meta.2001.1948611229431
  • Haller H, Schaper D, Ziegler W, et al. Low-density lipoprotein induces vascular adhesion molecule expression on human endothelial cells. Hypertension. 1995;25:511–516. doi:10.1161/01.hyp.25.4.5117536711
  • Al-Benna S, Hamilton CA, McClure JD, et al. Low-density lipoprotein cholesterol determines oxidative stress and endothelial dysfunction in saphenous veins from patients with coronary artery disease. Arterioscler Thromb Vasc Biol. 2006;26:218–223. doi:10.1161/01.ATV.0000193626.22269.4516254199
  • Holvoet P. Endothelial dysfunction, oxidation of low-density lipoprotein, and cardiovascular disease. Ther Apher. 1999;3:287–293. doi:10.1046/j.1526-0968.1999.00169.x10608719
  • Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004;109:III27–III32. doi:10.1161/01.CIR.0000131515.03336.f815198963
  • Witztum JL, Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest. 1991;88:1785–1792. doi:10.1172/JCI1154991752940
  • Thanyasiri P, Celermajer DS, Adams MR. Endothelial dysfunction occurs in peripheral circulation patients with acute and stable coronary artery disease. Am J Physiol. 2005;289:H513–H517. doi:10.1152/ajpheart.01086.2004
  • McIntyre M, Bohr DF, Dominiczak AF. Endothelial function in hypertension: the role of superoxide anion. Hypertension. 1999;34:539–545. doi:10.1161/01.hyp.34.4.53910523323
  • Lindgren FT, Elliott HA, Gofman JW. The ultracentrifugal characterization and isolation of human blood lipids and lipoproteins, with applications to the study of atherosclerosis. J Phys Colloid Chem. 1951;55:80–93.14814634
  • MM KR S, Lindgren FT, Forte TM. Heterogeneity of serum low density lipoproteins in normal human. J Lipid Res. 1981;22:236–244.7240955
  • Davies IG. Rapid separation of ldl subclasses by iodixanol gradient ultracentrifugation. Clin Chem. 2003;49:1865–1872.14578318
  • Prado KB, Shugg S, Backstrand JR. Low-density lipoprotein particle number predicts coronary artery calcification in asymptomatic adults at intermediate risk of cardiovascular disease. J Clin Lipidol. 2011;5:408–413. doi:10.1016/j.jacl.2011.07.00121981843
  • Sacks FM. Low-density lipoprotein size and cardiovascular disease: a reappraisal. J Clin Endocrinol Metab. 2003;88:4525–4532. doi:10.1210/jc.2003-03063614557416
  • Vergnani L, Hatrik S, Ricci F, et al. Effect of native and oxidized low-density lipoprotein on endothelial nitric oxide and superoxide production: key role of l-arginine availability. Circulation. 2000;101:1261–1266. doi:10.1161/01.cir.101.11.126110725285
  • Brovkovych V, Patton S, Brovkovych S, Kiechle F, Huk I, Malinski T. In situ measurement of nitric oxide, superoxide and peroxynitrite during endotoxemia. J Physiol Pharmacol. 1997;48:633–644.9444612
  • Kalinowski L, Dobrucki LW, Szczepanska-Konkel M, et al. Third-generation beta-blockers stimulate nitric oxide release from endothelial cells through ATP efflux: a novel mechanism for antihypertensive action. Circulation. 2003;107:2747–2752. doi:10.1161/01.CIR.0000066912.58385.DE12742996
  • Kalinowski L, Malinski T. Endothelial NADH/-NADPH-dependent enzymatic sources of superoxide production: relationship to endothelial dysfunction. Acta Biochim Pol. 2004;51:459–469. doi:03500145915218542
  • Malinski T, Taha Z, Moncada S. Direct electrochemical measurement of nitric oxide released from human platelets. Biochem Biophys Res Commun. 1993;194:960–965. doi:10.1006/bbrc.1993.19148343175
  • Malinski T, Taha Z. Nitric oxide release from a single cell measured in situ by a porphyrinic-based microsensor. Nature. 1992;358:676–678. doi:10.1038/358676a01495562
  • Corbalan JJ, Medina C, Jacoby A, Malinski T, Radomski MW. Amorphous silica nanoparticles trigger nitric oxide/peroxynitrite imbalance in human endothelial cells: inflammatory and cytotoxic effects. Int J Nanomedicine. 2011;6:2821–2835. doi:10.2147/IJN.S2507122131828
  • Balbatun A, Louka FR, Malinski T. Dynamics of nitric oxide release in the cardiovascular system. Acta Biochim Pol. 2003;50:61–68. doi:03500106112673347
  • Boisrame-Helms J, Kremer H, Schini-Kerth V, Meziani F. Endothelial dysfunction in sepsis. Curr Vasc Pharmacol. 2013;11:150–160.23506494
  • Forstermann U, Munzel T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation. 2006;113:1708–1714. doi:10.1161/CIRCULATIONAHA.105.60253216585403
  • Osto E, Matter CM, Kouroedov A, et al. C-jun n-terminal kinase 2 deficiency protects against hypercholesterolemia-induced endothelial dysfunction and oxidative stress. Circulation. 2008;118:2073–2080. doi:10.1161/CIRCULATIONAHA.108.76503218955669
  • Yildirim E, Bugan B, Celik M, Yuksel UC, Yalcinkaya E. Small dense low-density lipoprotein could be used as a therapeutic marker for treatment in patients with acute coronary syndrome. Angiology. 2013;64:644. doi:10.1177/000331971348580623620307
  • Okumura K, Takahashi R, Taguchi N, et al. Small low-density lipoprotein cholesterol concentration is a determinant of endothelial dysfunction by peripheral artery tonometry in men. J Atheroscler Thromb. 2012;19:897–903. doi:10.5551/jat.1324322786444
  • Lamarche B, Tchernof A, Moorjani S, et al. Small, dense low-density lipoprotein particles as a predictor of the risk of ischemic heart disease in men - prospective results from the quebec cardiovascular study. Circulation. 1997;95:69–75. doi:10.1161/01.cir.95.1.698994419
  • Thony B, Auerbach G, Blau N. Tetrahydrobiopterin biosynthesis, regeneration and functions. Biochem J. 2000;347 Pt 1:1–16.10727395
  • Pagano PJ, Tornheim K, Cohen RA. Superoxide anion production by rabbit thoracic aorta - effect of endothelium-derived nitric-oxide. Am J Physiol. 1993;265:H707–H712. doi:10.1152/ajpheart.1993.265.2.H7077690193
  • Talarek S, Listos J, Fidecka S. Effect of nitric oxide synthase inhibitors on benzodiazepine withdrawal in mice and rats. Pharmacol Rep. 2011;63:680–689.21857078
  • Kopincova J, Puzserova A, Bernatova I. L-name in the cardiovascular system - nitric oxide synthase activator? Pharmacol Rep. 2012;64:511–520.22814004
  • Bernatova I, Kopincova J, Puzserova A, Janega P, Babal P. Chronic low-dose l-name treatment increases nitric oxide production and vasorelaxation in normotensive rats. Physiol Res. 2007;56 Suppl 2:S17–S24.
  • Pechanova O, Kojsova S, Jendekova L. Ambivalent effect of chronic l-name treatment in the heart and brain: the role of nuclear factor-kappa b. J Hypertens. 2008;26:S85–S85.
  • Milstien S, Katusic Z. Oxidation of tetrahydrobiopterin by peroxynitrite: implications for vascular endothelial function. Biochem Biophys Res Commun. 1999;263:681–684. doi:10.1006/bbrc.1999.142210512739
  • Oliveira MW, Minotto JB, de Oliveira MR, et al. Scavenging and antioxidant potential of physiological taurine concentrations against different reactive oxygen/nitrogen species. Pharmacol Rep. 2010;62:185–193.20360629
  • Guzik TJ, West NE, Pillai R, Taggart DP, Channon KM. Nitric oxide modulates superoxide release and peroxynitrite formation in human blood vessels. Hypertension. 2002;39:1088–1094. doi:10.1161/01.hyp.0000018041.48432.b512052847
  • Schramm A, Matusik P, Osmenda G, Guzik TJ. Targeting nadph oxidases in vascular pharmacology. Vascul Pharmacol. 2012;56:216–231. doi:10.1016/j.vph.2012.02.01222405985
  • Smalley DM, Lin JH, Curtis ML, Kobari Y, Stemerman MB, Pritchard KA Jr. Native ldl increases endothelial cell adhesiveness by inducing intercellular adhesion molecule-1. Arterioscler Thromb Vasc Biol. 1996;16:585–590. doi:10.1161/01.atv.16.4.5858624781
  • Erl W, Weber PC, Weber C. Monocytic cell adhesion to endothelial cells stimulated by oxidized low density lipoprotein is mediated by distinct endothelial ligands. Atherosclerosis. 1998;136:297–303. doi:10.1016/s0021-9150(97)00223-29543101
  • Weber C, Erl W, Weber PC. Enhancement of monocyte adhesion to endothelial cells by oxidatively modified low-density lipoprotein is mediated by activation of cd11b. Biochem Biophys Res Commun. 1995;206:621–628. doi:10.1006/bbrc.1995.10887826380
  • Takei A, Huang Y, Lopes-Virella MF. Expression of adhesion molecules by human endothelial cells exposed to oxidized low density lipoprotein. Influences of degree of oxidation and location of oxidized ldl. Atherosclerosis. 2001;154:79–86. doi:10.1016/s0021-9150(00)00465-211137085
  • BV PS K, Alexander RW, Medford RM. Modified low density lipoprotein and its constituents augment cytokine-activated vascular cell adhesion molecule-1 gene expression in human vascular endothelial cells. J Clin Invest. 1995;95:1262–1270. doi:10.1172/JCI1177767533787