565
Views
65
CrossRef citations to date
0
Altmetric
Review

Gold nanoparticles and angiogenesis: molecular mechanisms and biomedical applications

, &
Pages 7643-7663 | Published online: 19 Sep 2019

References

  • Arboleda-Velasquez JF, D’Amore PA. Chapter 10 - Vasculogenesis and Angiogenesis In: Willis MS, Homeister JW, Stone JR, editors. Cellular and Molecular Pathobiology of Cardiovascular Disease. San Diego: Academic Press; 2014:181–196.
  • Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med. 2000;6:389. doi:10.1038/7465110742145
  • Ribatti D. The discovery of tumor angiogenesis factors: a historical overview In: Ribatti. D, editor. Tumor Angiogenesis Assays: Methods and Protocols. New York: Springer New York; 2016:1–12.
  • Adair TH, Montani JP. Integrated Systems Physiology: from Molecule to Function to Disease. In: Angiogenesis. San Rafael (CA); 2010.
  • Bussolino F, Mantovani A, Persico G. Molecular mechanisms of blood vessel formation. Trends Biochem Sci. 1997;22(7):251–256.9255066
  • Mousa SA, Arias HR, Davis PJ. Role of non-neuronal nicotinic acetylcholine receptors in angiogenesis modulation In: Mousa SA, Davis PJ, editors. Angiogenesis Modulations in Health and Disease: Practical Applications of Pro- and Anti-angiogenesis Targets. Dordrecht: Springer Netherlands; 2013:55–75.
  • Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9(6):653–660. doi:10.1038/nm0603-65312778163
  • Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473(7347):298–307. doi:10.1038/nature1014421593862
  • Carmeliet P. Angiogenesis in life, disease and medicine. Nature. 2005;438(7070):932–936. doi:10.1038/nature0447816355210
  • Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science. 1997;277(5322):55–60. doi:10.1126/science.277.5322.559204896
  • Gale NW, Yancopoulos GD. Growth factors acting via endothelial cell-specific receptor tyrosine kinases: VEGFs, angiopoietins, and ephrins in vascular development. Genes Dev. 1999;13(9):1055–1066. doi:10.1101/gad.13.9.105510323857
  • Coussens LM, Raymond WW, Bergers G, et al. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev. 1999;13(11):1382–1397. doi:10.1101/gad.13.11.138210364156
  • Mousa SA. Survey of Pro-angiogenesis Strategies In: Mousa SA, Davis PJ, editors. Angiogenesis Modulations in Health and Disease: Practical Applications of Pro- and Anti-angiogenesis Targets. Dordrecht: Springer Netherlands; 2013:15–18.
  • Gacche RN, Meshram RJ. Angiogenic factors as potential drug target: efficacy and limitations of anti-angiogenic therapy. Biochim Biophys Acta Rev Cancer. 2014;1846(1):161–179. doi:10.1016/j.bbcan.2014.05.002
  • Mousa SA. Survey of Anti-angiogenesis Strategies In: Mousa SA, Davis PJ, editors. Angiogenesis Modulations in Health and Disease: Practical Applications of Pro- and Anti-angiogenesis Targets. Dordrecht: Springer Netherlands; 2013:95–106.
  • Gupta MK, Qin RY. Mechanism and its regulation of tumor-induced angiogenesis. World J Gastroenterol. 2003;9(6):1144–1155. doi:10.3748/wjg.v9.i6.114412800214
  • Nyberg P, Xie L, Kalluri R. Endogenous inhibitors of angiogenesis. Cancer Res. 2005;65(10):3967–3979. doi:10.1158/0008-5472.CAN-04-242715899784
  • Mousa SA, Anwar LH. Anti-angiogenesis therapy as an adjunct to chemotherapy in oncology In: Mousa SA, Davis PJ, editors. Angiogenesis Modulations in Health and Disease: Practical Applications of Pro- and Anti-angiogenesis Targets. Dordrecht: Springer Netherlands; 2013:143–155.
  • Dvorak HF. Angiogenesis: update 2005. J Thromb Haemost. 2005;3(8):1835–1842. doi:10.1111/j.1538-7836.2005.01361.x16102050
  • Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003;3(6):401–410. doi:10.1038/nrc109312778130
  • Folkman J, Hanahan D. Switch to the angiogenic phenotype during tumorigenesis. Princess Takamatsu Symp. 1991;22:339–347.1726933
  • Nagy JA, Vasile E, Feng D, et al. VEGF-A induces angiogenesis, arteriogenesis, lymphangiogenesis, and vascular malformations. Cold Spring Harb Symp Quant Biol. 2002;67:227–237.12858545
  • Bhattacharya R, Mukherjee P. Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev. 2008;60(11):1289–1306. doi:10.1016/j.addr.2008.03.01318501989
  • Brown LF, Yeo KT, Berse B, et al. Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing. J Exp Med. 1992;176(5):1375–1379. doi:10.1084/jem.176.5.13751402682
  • Dvorak HF. How tumors make bad blood vessels and stroma. Am J Pathol. 2003;162(6):1747–1757. doi:10.1016/s0002-9440(10)64309-x12759232
  • Carmeliet P, Collen D. Role of vascular endothelial growth factor and vascular endothelial growth factor receptors in vascular development. Curr Top Microbiol Immunol. 1999;237:133–158.9893349
  • Chu H, Wang Y. Therapeutic angiogenesis: controlled delivery of angiogenic factors. Ther Deliv. 2012;3(6):693–714.22838066
  • Simons M. Angiogenesis: where do we stand now? Circulation. 2005;111(12):1556–1566. doi:10.1161/01.CIR.0000159345.00591.8F15795364
  • Van Hove AH, Benoit DSW. Depot-based delivery systems for pro-angiogenic peptides: a review. Front Bioeng Biotechnol. 2015;3(102). doi:10.3389/fbioe.2015.00102
  • Bader RA, Putnam DA. 2013 Engineering Polymer Systems for Improved Drug Delivery. Somerset, UNITED STATES: John Wiley & Sons, Incorporated.
  • Hollister C, Li VW. Using angiogenesis in chronic wound care with becaplermin and oxidized regenerated cellulose/collagen. Nurs Clin North Am. 2007;42(3):457–465, vii. doi:10.1016/j.cnur.2007.05.00217825664
  • The Angiogenesis Foundation. (2018). “Therapeutic angiogenesis.” Accessed 126, 2019, Available from: https://angio.org/learn/treatments/.
  • Steed DLMD. Clinical evaluation of recombinant human platelet-derived growth factor for the treatment of lower extremity ulcers. Plastic & Reconstructive Surgery Current Concepts in Wound Healing. 2006;117(7S):143S–149S. doi:10.1097/01.prs.0000222526.21512.4c
  • Papanas N, Maltezos E. Benefit-risk assessment of becaplermin in the treatment of diabetic foot ulcers. Drug Saf. 2010;33(6):455–461. doi:10.2165/11534570-000000000-0000020486728
  • Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell. 2009;15(3):232–239. doi:10.1016/j.ccr.2009.01.02119249681
  • Griffioen AW, Mans LA, de Graaf AMA, et al. Rapid angiogenesis onset after discontinuation of sunitinib treatment of renal cell carcinoma patients. Clin Cancer Res. 2012;18(14):3961–3971. doi:10.1158/1078-0432.CCR-12-000222573349
  • Kamba T, McDonald DM. Mechanisms of adverse effects of anti-VEGF therapy for cancer. Br J Cancer. 2007;96:1788. doi:10.1038/sj.bjc.660381317519900
  • Kubota Y. Tumor angiogenesis and anti-angiogenic therapy. Keio J Med. 2012;61(2):47–56.22760023
  • Banerjee D, Harfouche R, Sengupta S. Nanotechnology-mediated targeting of tumor angiogenesis. Vasc Cell. 2011;3(1):3. doi:10.1186/2045-824X-3-321349160
  • Verheul HMW, Pinedo HM. Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition. Nat Rev Cancer. 2007;7:475. doi:10.1038/nrc215217522716
  • Clarke JM, Hurwitz HI. Understanding and targeting resistance to anti-angiogenic therapies. J Gastrointest Oncol. 2013;4(3):253–263. doi:10.3978/j.issn.2078-6891.2013.03623997938
  • Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer. 2008;8(8):592–603. doi:10.1038/nrc244218650835
  • Huijbers EJ, van Beijnum JR, Thijssen VL, Sabrkhany S, Nowak-Sliwinska P, Griffioen AW. Role of the tumor stroma in resistance to anti-angiogenic therapy. Drug Resist Updat. 2016;25:26–37. doi:10.1016/j.drup.2016.02.00227155374
  • Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7:771. doi:10.1038/nrd261418758474
  • Arvizo R, Bhattacharya R, Mukherjee P. Gold nanoparticles: opportunities and challenges in nanomedicine. Expert Opin Drug Deliv. 2010;7(6):753–763. doi:10.1517/1742524100377701020408736
  • Seo D, Song H. Synthesis of gold nanoparticles in liquid phase. In Louis C, Pluchery O. Gold Nanoparticles for Physics, Chemistry and Biology. London: Imperial College Press; 2012;103–138.
  • Mori T, Hegmann T. Determining the composition of gold nanoparticles: a compilation of shapes, sizes, and calculations using geometric considerations. J Nanopart Res. 2016;18(10):295. doi:10.1007/s11051-016-3587-727766020
  • Zhang -S-S, Feng L, Senanayake RD, et al. Diphosphine-protected ultrasmall gold nanoclusters: opened icosahedral Au(13) and heart-shaped Au(8) clusters. Chem Sci. 2017;9(5):1251–1258. doi:10.1039/c7sc03566g29675171
  • Huang R, Wen Y-H, Shao G-F, Zhu -Z-Z, Sun S-G. Single-crystalline and multiple-twinned gold nanoparticles: an atomistic perspective on structural and thermal stabilities. RSC Adv. 2014;4(15):7528–7537. doi:10.1039/c3ra46631k
  • Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science. 2003;298:2176–2179. doi:10.1126/science.1077229
  • Zhang J, Langille MR, Personick ML, Zhang K, Li S, Mirkin CA. Concave cubic gold nanocrystals with high-index facets. J Am Chem Soc. 2010;132(40):14012–14014. doi:10.1021/ja106394k20853848
  • Skrabalak SE, Chen J, Sun Y, et al. Gold nanocages: synthesis, properties, and applications. Acc Chem Res. 2008;41(12):1587–1595. doi:10.1021/ar800018v18570442
  • Zhang Q, Zhou Y, Villarreal E, Lin Y, Zou S, Wang H. Faceted gold nanorods: nanocuboids, convex nanocuboids, and concave nanocuboids. Nano Lett. 2015;15(6):4161–4169. doi:10.1021/acs.nanolett.5b0128625927399
  • Personick ML, Langille MR, Zhang J, Harris N, Schatz GC, Mirkin CA. Synthesis and isolation of {110}-faceted gold bipyramids and rhombic dodecahedra. J Am Chem Soc. 2011;133(16):6170–6173. doi:10.1021/ja201826r21452816
  • Wu H-L, Chen C-H, Huang MH. Seed-mediated synthesis of branched gold nanocrystals derived from the side growth of pentagonal bipyramids and the formation of gold nanostars. Chem Mater. 2009;21(1):110–114. doi:10.1021/cm802257e
  • Wu S, Yang X, Luo F, et al. Biosynthesis of flower-shaped Au nanoclusters with EGCG and their application for drug delivery. J Nanobiotechnology. 2018;16(1):90. doi:10.1186/s12951-018-0417-330424776
  • Sau TK, Murphy CJ. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc. 2004;126(28):8648–8649. doi:10.1021/ja047846d15250706
  • Chen S, Wang ZL, Ballato J, Foulger SH, Carroll DL. Monopod, bipod, tripod, and tetrapod gold nanocrystals. J Am Chem Soc. 2003;125(52):16186–16187. doi:10.1021/ja038927x14692749
  • Shakiba A, Zenasni O, Marquez M, Randall Lee T. Advanced drug delivery via self-assembled monolayer-coated nanoparticles. AIMS Bioeng. 2017;4:275–299. doi:10.3934/bioeng.2017.2.275
  • Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl. 2014;53(46):12320–12364. doi:10.1002/anie.20140303625294565
  • Webb JA, Bardhan R. Emerging advances in nanomedicine with engineered gold nanostructures. Nanoscale. 2014;6(5):2502–2530. doi:10.1039/c3nr05112a24445488
  • McIntosh CM, Esposito EA 3rd, Boal AK, Simard JM, Martin CT, Rotello VM. Inhibition of DNA transcription using cationic mixed monolayer protected gold clusters. J Am Chem Soc. 2001;123(31):7626–7629. doi:10.1021/ja015556g11480984
  • Conde J, Ambrosone A, Sanz V, et al. Design of multifunctional gold nanoparticles for in vitro and in vivo gene silencing. ACS Nano. 2012;6(9):8316–8324. doi:10.1021/nn303022322882598
  • Wu Z, Liu GQ, Yang XL, Jiang JH. Electrostatic nucleic acid nanoassembly enables hybridization chain reaction in living cells for ultrasensitive mRNA imaging. J Am Chem Soc. 2015;137(21):6829–6836. doi:10.1021/jacs.5b0177825969953
  • Lin J, Zhang H, Chen Z, Zheng Y. Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship. ACS Nano. 2010;4(9):5421–5429. doi:10.1021/nn101079220799717
  • Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc. 1951;11:55–75. doi:10.1039/df9511100055
  • Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci. 1973;241(105):20–22. doi:10.1038/physci241020a0
  • Frens G. Particle size and sol stability in metal colloids. Kolloid-Zeitschrift und Zeitschrift für Polymere. 1972;250(7):736–741. doi:10.1007/BF01498565
  • Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc Chem Commun. 1994;7:801–802. doi:10.1039/C39940000801
  • Shah M, Badwaik V, Kherde Y, et al. Gold nanoparticles: various methods of synthesis and antibacterial applications. Front Biosci. 2014;19:1320. doi:10.2741/4284
  • Giersig M, Mulvaney P. Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir. 1993;9(12):3408–3413. doi:10.1021/la00036a014
  • Hostetler MJ, Templeton AC, Murray RW. Dynamics of place-exchange reactions on monolayer-protected gold cluster molecules. Langmuir. 1999;15(11):3782–3789. doi:10.1021/la981598f
  • Murphy CJ, Jana NR. Controlling the aspect ratio of inorganic nanorods and nanowires. Adv Mater. 2002;14(1):80–82.
  • Shankar SS, Bhargava S, Sastry M. Synthesis of gold nanospheres and nanotriangles by the Turkevich approach. J Nanosci Nanotechnol. 2005;5(10):1721–1727. doi:10.1166/jnn.2005.19216245535
  • Bridges CR, DiCarmine PM, Fokina A, Huesmann D, Seferos DS. Synthesis of gold nanotubes with variable wall thicknesses. J Mater Chem A. 2013;1(4):1127–1133. doi:10.1039/C2TA00729K
  • Shao L, Susha AS, Cheung LS, Sau TK, Rogach AL, Wang J. Plasmonic properties of single multispiked gold nanostars: correlating modeling with experiments. Langmuir. 2012;28(24):8979–8984. doi:10.1021/la204809722353020
  • Jana NR, Gearheart L, Murphy CJ. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv Mater. 2001;13(18):1389–1393. doi:10.1002/(ISSN)1521-4095
  • Jana NR, Gearheart L, Murphy CJ. Seeding growth for size control of 5−40 nm diameter gold nanoparticles. Langmuir. 2001;17(22):6782–6786. doi:10.1021/la0104323
  • Isaeva EI, Svistunova OB, Gorbunova VV, Boitsova TB. Photochemical synthesis of gold nanoparticles in elastomer films of poly(butyl acrylate) latex. Russ J Gen Chem. 2007;77(12):2113–2116. doi:10.1134/S1070363207120067
  • Marin ML, McGilvray KL, Scaiano JC. Photochemical strategies for the synthesis of gold nanoparticles from Au(III) and Au(I) using photoinduced free radical generation. J Am Chem Soc. 2008;130(49):16572–16584. doi:10.1021/ja803490n19049456
  • Niidome Y, Nishioka K, Kawasaki H, Yamada S. Rapid synthesis of gold nanorods by the combination of chemical reduction and photoirradiation processes; morphological changes depending on the growing processes. Chem Commun. 2003;18:2376–2377. doi:10.1039/B307836A
  • Yusof NS, Ashokkumar M. Sonochemical synthesis of gold nanoparticles by using high intensity focused ultrasound. Chemphyschem. 2015;16(4):775–781. doi:10.1002/cphc.20140269725598360
  • Gutiérrez-Wing C, Esparza R, Vargas-Hernández C, Fernández García ME, José-Yacamán M. Microwave-assisted synthesis of gold nanoparticles self-assembled into self-supported superstructures. Nanoscale. 2012;4(7):2281–2287. doi:10.1039/c2nr12053d22398420
  • Chen Y-S, Hung Y-C, Liau I, Huang GS. Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res Lett. 2009;4(8):858–864. doi:10.1007/s11671-009-9334-620596373
  • Alkilany AM, Murphy CJ. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res. 2010;12(7):2313–2333. doi:10.1007/s11051-010-9911-821170131
  • Aljabali AAA, Akkam Y, Al Zoubi MS, et al. Synthesis of gold nanoparticles using leaf extract of ziziphus zizyphus and their antimicrobial activity. Nanomaterials (Basel). 2018;8(3):174. doi:10.3390/nano8030174
  • Husen A. Gold nanoparticles from plant system: synthesis, characterization and their application. In: Ghorbanpour M, Manika K, Varma A, eds. Nanoscience and Plant–Soil Systems Cham: Springer International Publishing; 2017;48:455–479.
  • Elia P, Zach R, Hazan S, Kolusheva S, Porat ZE, Zeiri Y. Green synthesis of gold nanoparticles using plant extracts as reducing agents. Int J Nanomedicine. 2014;9:4007–4021. doi:10.2147/IJN.S5734325187704
  • Singh PK, Kundu S. Biosynthesis of gold nanoparticles using bacteria. Proc Natl Acad Sci India Sect B Biol Sci. 2014;84(2):331–336. doi:10.1007/s40011-013-0230-6
  • Zhang X, Qu Y, Shen W, et al. Biogenic synthesis of gold nanoparticles by yeast Magnusiomyces ingens LH-F1 for catalytic reduction of nitrophenols. Colloids Surf A Physicochem Eng Asp. 2016;497:280–285. doi:10.1016/j.colsurfa.2016.02.033
  • Pourali P, Badiee SH, Manafi S, Noorani T, Rezaei A, Yahyaei B. Biosynthesis of gold nanoparticles by two bacterial and fungal strains, Bacillus cereus and Fusarium oxysporum, and assessment and comparison of their nanotoxicity in vitro by direct and indirect assays. ELECTRON J BIOTECHN. 2017;29:86–93. doi:10.1016/j.ejbt.2017.07.005
  • Pei X, Qu Y, Shen W, et al. Green synthesis of gold nanoparticles using fungus Mariannaea sp. HJ and their catalysis in reduction of 4-nitrophenol. Environ Sci Pollut Res Int. 2017;24(27):21649–21659. doi:10.1007/s11356-017-9684-z28752308
  • González-Ballesteros N, Prado-López S, Rodríguez-González JB, Lastra M, Rodríguez-Argüelles MC. Green synthesis of gold nanoparticles using brown algae Cystoseira baccata: its activity in colon cancer cells. Colloids Surf B Biointerfaces. 2017;153:190–198. doi:10.1016/j.colsurfb.2017.02.02028242372
  • Abdel-Raouf N, Al-Enazi NM, Ibraheem IBM. Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arab J Chem. 2017;10:S3029–S3039. doi:10.1016/j.arabjc.2013.11.044
  • Shao Y, Jin Y, Dong S. Synthesis of gold nanoplates by aspartate reduction of gold chloride. Chem Commun. 2004;9:1104–1105. doi:10.1039/b315732f
  • Maruyama T, Fujimoto Y, Maekawa T. Synthesis of gold nanoparticles using various amino acids. J Colloid Interface Sci. 2015;447:254–257. doi:10.1016/j.jcis.2014.12.04625591824
  • Tetgure SR, Borse AU, Sankapal BR, Garole VJ, Garole DJ. Green biochemistry approach for synthesis of silver and gold nanoparticles using Ficus racemosa latex and their pH-dependent binding study with different amino acids using UV/Vis absorption spectroscopy. Amino Acids. 2015;47(4):757–765. doi:10.1007/s00726-014-1906-925618751
  • Gholami-Shabani M, Shams-Ghahfarokhi M, Gholami-Shabani Z, et al. Enzymatic synthesis of gold nanoparticles using sulfite reductase purified from Escherichia coli: a green eco-friendly approach. Process Biochem. 2015;50(7):1076–1085. doi:10.1016/j.procbio.2015.04.004
  • Abraham S, Narine SS. A facile synthesis of lipid stabilized gold nanoparticles: a step towards biodegradable biosensors. J Nanosci Nanotechnol. 2011;11(8):7027–7032. doi:10.1166/jnn.2011.487822103117
  • Rasch MR, Rossinyol E, Hueso JL, Goodfellow BW, Arbiol J, Korgel BA. Hydrophobic gold nanoparticle self-assembly with phosphatidylcholine lipid: membrane-loaded and janus vesicles. Nano Lett. 2010;10(9):3733–3739. doi:10.1021/nl102387n20731366
  • Sharma D. A biologically friendly single step method for gold nanoparticle formation. Colloids Surf B Biointerfaces. 2011;85(2):330–337. doi:10.1016/j.colsurfb.2011.03.00521459561
  • Kunoh T, Takeda M, Matsumoto S, et al. Green synthesis of gold nanoparticles coupled with nucleic acid oxidation. ACS Sustain Chem Eng. 2018;6(1):364–373. doi:10.1021/acssuschemeng.7b02610
  • Anstaett P, Zheng Y, Thai T, Funston AM, Bach U, Gasser G. Synthesis of stable peptide nucleic acid-modified gold nanoparticles and their assembly onto gold surfaces. Angew Chem Int Ed Engl. 2013;52(15):4217–4220. doi:10.1002/anie.20120968423460137
  • Das APDR, Nath SS, Bhattacharjee R. Preparation of linoleic acid capped gold nanoparticles and their spectra. Physica E Low Dimens Syst Nanostruct. 2010;43:224–227. doi:10.1016/j.physe.2010.07.008
  • Kitaoka T, Yokota S, Opietnik M, Rosenau T. Synthesis and bio-applications of carbohydrate–gold nanoconjugates with nanoparticle and nanolayer forms. Mat Sci Eng C Mater. 2011;31(6):1221–1229. doi:10.1016/j.msec.2010.10.009
  • Tagad CK, Rajdeo KS, Kulkarni A, More P, Aiyer RC, Sabharwal S. Green synthesis of polysaccharide stabilized gold nanoparticles: chemo catalytic and room temperature operable vapor sensing application. RSC Adv. 2014;4(46):24014–24019. doi:10.1039/c4ra02972k
  • Pandey S, Goswami GK, Nanda KK. Green synthesis of polysaccharide/gold nanoparticle nanocomposite: an efficient ammonia sensor. Carbohydr Polym. 2013;94(1):229–234. doi:10.1016/j.carbpol.2013.01.00923544533
  • Mao Z, Zhou X, Gao C. Influence of structure and properties of colloidal biomaterials on cellular uptake and cell functions. Biomater Sci. 2013;1(9):896–911. doi:10.1039/c3bm00137g
  • Panzarini E, Mariano S, Carata E, Mura F, Rossi M, Dini L. Intracellular transport of silver and gold nanoparticles and biological responses: an update. Int J Mol Sci. 2018;19(5):1305. doi:10.3390/ijms19051305
  • Zhu M, Nie G, Meng H, Xia T, Nel A, Zhao Y. Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc Chem Res. 2013;46(3):622–631. doi:10.1021/ar300031y22891796
  • Chithrani BD, Ghazani AA, Chan WC. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006;6(4):662–668. doi:10.1021/nl052396o16608261
  • Ko WK, Heo DN, Moon HJ, et al. The effect of gold nanoparticle size on osteogenic differentiation of adipose-derived stem cells. J Colloid Interface Sci. 2015;438:68–76. doi:10.1016/j.jcis.2014.08.05825454427
  • Fernandez TD, Pearson JR, Leal MP, et al. Intracellular accumulation and immunological properties of fluorescent gold nanoclusters in human dendritic cells. Biomaterials. 2015;43:1–12. doi:10.1016/j.biomaterials.2014.11.04525591956
  • Le Guevel X, Perez Perrino M, Fernandez TD, et al. Multivalent glycosylation of fluorescent gold nanoclusters promotes increased human dendritic cell targeting via multiple endocytic pathways. ACS Appl Mater Interfaces. 2015;7(37):20945–20956. doi:10.1021/acsami.5b0654126329370
  • Saha K, Kim ST, Yan B, et al. Surface functionality of nanoparticles determines cellular uptake mechanisms in mammalian cells. Small. 2013;9(2):300–305. doi:10.1002/smll.20120112922972519
  • Fytianos K, Rodriguez-Lorenzo L, Clift MJ, et al. Uptake efficiency of surface modified gold nanoparticles does not correlate with functional changes and cytokine secretion in human dendritic cells in vitro. Nanomedicine. 2015;11(3):633–644. doi:10.1016/j.nano.2014.11.00425555350
  • Xie X, Liao J, Shao X, Li Q, Lin Y. The effect of shape on cellular uptake of gold nanoparticles in the forms of stars, rods, and triangles. Sci Rep. 2017;7(1):3827. doi:10.1038/s41598-017-04229-z28630477
  • Pan F, Yang W, Li W, et al. Conjugation of gold nanoparticles and recombinant human endostatin modulates vascular normalization via interruption of anterior gradient 2-mediated angiogenesis. Tumour Biol. 2017;39(7):1010428317708547. doi:10.1177/101042831770854728714365
  • Balakrishnan S, Bhat FA, Raja Singh P, et al. Gold nanoparticle-conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2-mediated pathway in breast cancer. Cell Prolif. 2016;49(6):678–697. doi:10.1111/cpr.1229627641938
  • Saber MM, Bahrainian S, Dinarvand R, Atyabi F. Targeted drug delivery of Sunitinib Malate to tumor blood vessels by cRGD-chiotosan-gold nanoparticles. Int J Pharm. 2017;517(1–2):269–278. doi:10.1016/j.ijpharm.2016.12.01627956189
  • Pan Y, Ding H, Qin L, Zhao X, Cai J, Du B. Gold nanoparticles induce nanostructural reorganization of VEGFR2 to repress angiogenesis. J Biomed Nanotechnol. 2013;9(10):1746–1756.24015504
  • Shen N, Zhang R, Zhang HR, et al. Inhibition of retinal angiogenesis by gold nanoparticles via inducing autophagy. Int J Ophthalmol. 2018;11(8):1269–1276. doi:10.18240/ijo.2018.08.0430140628
  • Jo DH, Hong JW, Kim JH, Han SW, Kim JH. Gold nanocrystals with well-defined crystallographic {111} facets suppress pathological neovascularization. J Biomed Nanotechnol. 2016;12(7):1520–1526.29337491
  • Pan Y, Wu Q, Qin L, Cai J, Du B. Gold nanoparticles inhibit VEGF165-induced migration and tube formation of endothelial cells via the Akt pathway. Biomed Res Int. 2014;(2014:418624.24987682
  • Reva GV, Reva IV, Yamamoto T, et al. Reaction of dermal structures to subcutaneous injection of gold nanoparticles to CBA mice. Bull Exp Biol Med. 2014;156(4):491–494. doi:10.1007/s10517-014-2382-724771435
  • Kemp MM, Kumar A, Mousa S, et al. Gold and silver nanoparticles conjugated with heparin derivative possess anti-angiogenesis properties. Nanotechnology. 2009;20(45):455104. doi:10.1088/0957-4484/20/45/45510419822927
  • Song HB, Wi JS, Jo DH, et al. Intraocular application of gold nanodisks optically tuned for optical coherence tomography: inhibitory effect on retinal neovascularization without unbearable toxicity. Nanomedicine. 2017;13(6):1901–1911. doi:10.1016/j.nano.2017.03.01628400160
  • Tan G, Onur MA. Cellular localization and biological effects of 20nm-gold nanoparticles. J Biomed Mater Res A. 2018;106(6):1708–1721. doi:10.1002/jbm.a.3637329468810
  • Vimalraj S, Ashokkumar T, Saravanan S. Biogenic gold nanoparticles synthesis mediated by Mangifera indica seed aqueous extracts exhibits antibacterial, anticancer and anti-angiogenic properties. Biomed Pharmacother. 2018;105:440–448. doi:10.1016/j.biopha.2018.05.15129879628
  • Pan F, Li W, Yang W, et al. Anterior gradient 2 as a supervisory marker for tumor vessel normalization induced by anti-angiogenic treatment. Oncol Lett. 2018;16(3):3083–3091. doi:10.3892/ol.2018.899630127899
  • Li W, Li X, Liu S, et al. Gold nanoparticles attenuate metastasis by tumor vasculature normalization and epithelial-mesenchymal transition inhibition. Int J Nanomedicine. 2017;12:3509–3520. doi:10.2147/IJN.S12880228496326
  • Mukherjee P, Bhattacharya R, Wang P, et al. Antiangiogenic properties of gold nanoparticles. Clin Cancer Res. 2005;11(9):3530–3534. doi:10.1158/1078-0432.CCR-04-248215867256
  • Arvizo RR, Rana S, Miranda OR, Bhattacharya R, Rotello VM, Mukherjee P. Mechanism of anti-angiogenic property of gold nanoparticles: role of nanoparticle size and surface charge. Nanomedicine. 2011;7(5):580–587. doi:10.1016/j.nano.2011.01.01121333757
  • Kim JH, Kim MH, Jo DH, Yu YS, Lee TG, Kim JH. The inhibition of retinal neovascularization by gold nanoparticles via suppression of VEGFR-2 activation. Biomaterials. 2011;32(7):1865–1871. doi:10.1016/j.biomaterials.2010.11.03021145587
  • Satapathy SR, Nayak A, Siddharth S, Das S, Nayak D, Kundu CN. Metallic gold and bioactive quinacrine hybrid nanoparticles inhibit oral cancer stem cell and angiogenesis by deregulating inflammatory cytokines in p53 dependent manner. Nanomedicine. 2018;14(3):883–896. doi:10.1016/j.nano.2018.01.00729366881
  • Pivodova V, Frankova J, Galandakova A, Ulrichova J. In vitro AuNPs’ cytotoxicity and their effect on wound healing. Nanobiomedicine (Rij). 2015;2:7. doi:10.5772/6217429942372
  • Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 2005;1(3):325–327. doi:10.1002/smll.20040009317193451
  • Mukherjee P, Bhattacharya R, Bone N, et al. Potential therapeutic application of gold nanoparticles in B-chronic lymphocytic leukemia (BCLL): enhancing apoptosis. J Nanobiotechnology. 2007;5:4. doi:10.1186/1477-3155-5-417488514
  • Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM. Gold nanoparticles: a new X-ray contrast agent. Br J Radiol. 2006;79(939):248–253. doi:10.1259/bjr/1316988216498039
  • Amendola V, Pilot R, Frasconi M, Marago OM, Iati MA. Surface plasmon resonance in gold nanoparticles: a review. J Phys Condens Matter. 2017;29(20):203002. doi:10.1088/1361-648X/aa60f328426435
  • Lau P, Bidin N, Islam S, et al. Influence of gold nanoparticles on wound healing treatment in rat model: photobiomodulation therapy. Lasers Surg Med. 2017;49(4):380–386. doi:10.1002/lsm.2261427859389
  • Saha S, Xiong X, Chakraborty PK, et al. Gold nanoparticle reprograms pancreatic tumor microenvironment and inhibits tumor growth. ACS Nano. 2016;10(12):10636–10651. doi:10.1021/acsnano.6b0223127758098
  • Roma-Rodrigues C, Heuer-Jungemann A, Fernandes AR, Kanaras AG, Baptista PV. Peptide-coated gold nanoparticles for modulation of angiogenesis in vivo. Int J Nanomedicine. 2016;11:2633–2639. doi:10.2147/IJN.S10866127354794
  • Groult H, Ruiz-Cabello J, Pellico J, et al. Parallel multifunctionalization of nanoparticles: a one-step modular approach for in vivo imaging. Bioconjug Chem. 2015;26(1):153–160. doi:10.1021/bc500536y25494619
  • Vilchis-Juarez A, Ferro-Flores G, Santos-Cuevas C, et al. Molecular targeting radiotherapy with cyclo-RGDFK(C) peptides conjugated to 177Lu-labeled gold nanoparticles in tumor-bearing mice. J Biomed Nanotechnol. 2014;10(3):393–404.24730235
  • Li M, Li Y, Huang X, Lu X. Captopril-polyethyleneimine conjugate modified gold nanoparticles for co-delivery of drug and gene in anti-angiogenesis breast cancer therapy. J Biomater Sci Polym Ed. 2015;26(13):813–827. doi:10.1080/09205063.2015.105799126166244
  • Yang Y, Zhang L, Cai J, et al. Tumor angiogenesis targeted radiosensitization therapy using gold nanoprobes guided by MRI/SPECT imaging. ACS Appl Mater Interfaces. 2016;8(3):1718–1732. doi:10.1021/acsami.5b0927426731347
  • Mieszawska AJ, Kim Y, Gianella A, et al. Synthesis of polymer-lipid nanoparticles for image-guided delivery of dual modality therapy. Bioconjug Chem. 2013;24(9):1429–1434. doi:10.1021/bc400166j23957728
  • Bhowmik T, Saha PP, DasGupta AK, Gomes A. Influence of gold nanoparticle tagged snake venom protein toxin NKCT1 on Ehrlich ascites carcinoma (EAC) and EAC induced solid tumor bearing male albino mice. Curr Drug Deliv. 2014;11(5):652–664.24827982
  • Kim JE, Lee J, Jang M, et al. Accelerated healing of cutaneous wounds using phytochemically stabilized gold nanoparticle deposited hydrocolloid membranes. Biomater Sci. 2015;3(3):509–519. doi:10.1039/c4bm00390j26222294
  • Chen Y, Wu Y, Gao J, et al. Transdermal vascular endothelial growth factor delivery with surface engineered gold nanoparticles. ACS Appl Mater Interfaces. 2017;9(6):5173–5180. doi:10.1021/acsami.6b1591428112909
  • Chien CC, Chen HH, Lai SF, et al. Gold nanoparticles as high-resolution X-ray imaging contrast agents for the analysis of tumor-related micro-vasculature. J Nanobiotechnology. 2012;10:10. doi:10.1186/1477-3155-10-1022409971
  • Son S, Kim N, You DG, et al. Antitumor therapeutic application of self-assembled RNAi-AuNP nanoconstructs: combination of VEGF-RNAi and photothermal ablation. Theranostics. 2017;7(1):9–22. doi:10.7150/thno.1604228042312
  • Nethi SK, Mukherjee S, Veeriah V, Barui AK, Chatterjee S, Patra CR. Bioconjugated gold nanoparticles accelerate the growth of new blood vessels through redox signaling. Chem Commun (Camb). 2014;50(92):14367–14370. doi:10.1039/c4cc06996j25298204
  • Gomez-Beloz A, Rucinski JC, Balick MJ, Tipton C. Double incision wound healing bioassay using Hamelia patens from El Salvador. J Ethnopharmacol. 2003;88(2–3):169–173.12963138
  • Wang B, Wang W, Yu Y, Zhang Y, Zhang J, Yuan Z. The study of angiogenesis stimulated by multivalent peptide ligand-modified alginate. Colloids Surf B Biointerfaces. 2017;154:383–390. doi:10.1016/j.colsurfb.2017.03.04928384617
  • Liu Y, Tan TTY, Yuan S, Choong C. Multifunctional P(PEGMA)–REDV conjugated titanium surfaces for improved endothelial cell selectivity and hemocompatibility. J Mater Chem B. 2013;1:(2):157–167. doi:10.1039/C2TB00014H
  • Chien CC, Chen HH, Lai SF, et al. X-ray imaging of tumor growth in live mice by detecting gold-nanoparticle-loaded cells. Sci Rep. 2012;2:610. doi:10.1038/srep0038622934133
  • Clark DP, Ghaghada K, Moding EJ, Kirsch DG, Badea CT. In vivo characterization of tumor vasculature using iodine and gold nanoparticles and dual energy micro-CT. Phys Med Biol. 2013;58(6):1683–1704. doi:10.1088/0031-9155/58/6/168323422321
  • Bao C, Beziere N, Del Pino P, et al. Gold nanoprisms as optoacoustic signal nanoamplifiers for in vivo bioimaging of gastrointestinal cancers. Small. 2013;9(1):68–74. doi:10.1002/smll.20120177923001862
  • Kim YH, Jeon J, Hong SH, et al. Tumor targeting and imaging using cyclic RGD-PEGylated gold nanoparticle probes with directly conjugated iodine-125. Small. 2011;7(14):2052–2060. doi:10.1002/smll.20110092721688390
  • Morales-Avila E, Ferro-Flores G, Ocampo-Garcia BE, et al. Multimeric system of 99mTc-labeled gold nanoparticles conjugated to c[RGDfK(C)] for molecular imaging of tumor alpha(v)beta(3) expression. Bioconjug Chem. 2011;22(5):913–922. doi:10.1021/bc100551s21513349
  • Pan D, Pramanik M, Senpan A, et al. Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons. Faseb J. 2011;25(3):875–882. doi:10.1096/fj.10-17172821097518
  • Zhang S, Gong M, Zhang D, Yang H, Gao F, Zou L. Thiol-PEG-carboxyl-stabilized Fe(2)O (3)/Au nanoparticles targeted to CD105: synthesis, characterization and application in MR imaging of tumor angiogenesis. Eur J Radiol. 2014;83(7):1190–1198. doi:10.1016/j.ejrad.2014.03.03424832501
  • Kennedy LC, Bickford LR, Lewinski NA, et al. A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small. 2011;7(2):169–183. doi:10.1002/smll.20100013421213377
  • Kharlamov AN, Feinstein JA, Cramer JA, Boothroyd JA, Shishkina EV, Shur V. Plasmonic photothermal therapy of atherosclerosis with nanoparticles: long-term outcomes and safety in NANOM-FIM trial. Future Cardiol. 2017;13(4):345–363. doi:10.2217/fca-2017-000928644056
  • Mesicek J, Kuca K. Summary of numerical analyses for therapeutic uses of laser-activated gold nanoparticles. Int J Hyperthermia. 2018;34(8):1255–1264. doi:10.1080/02656736.2018.144001629447018
  • Riley RS, Day ES. Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017;9(4):e1449.
  • Gamal-Eldeen AM, Moustafa D, El-Daly SM, et al. Gum Arabic-encapsulated gold nanoparticles for a non-invasive photothermal ablation of lung tumor in mice. Biomed Pharmacother. 2017;89:1045–1054. doi:10.1016/j.biopha.2017.03.00628298068
  • Bai YY, Zheng S, Zhang L, et al. Non-invasively evaluating therapeutic response of nanorod-mediated photothermal therapy on tumor angiogenesis. J Biomed Nanotechnol. 2014;10(11):3351–3360.26000393
  • Pedrosa P, Heuer-Jungemann A, Kanaras AG, Fernandes AR, Baptista PV. Potentiating angiogenesis arrest in vivo via laser irradiation of peptide functionalised gold nanoparticles. J Nanobiotechnology. 2017;15(1):85. doi:10.1186/s12951-017-0305-229162137
  • Nie L, Wang S, Wang X, et al. In vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars. Small. 2014;10(8):1585–1593, 1441. doi:10.1002/smll.20130292424150920
  • Liu S, Li H, Xia L, et al. Anti-RhoJ antibody functionalized Au@I nanoparticles as CT-guided tumor vessel-targeting radiosensitizers in patient-derived tumor xenograft model. Biomaterials. 2017;141:1–12. doi:10.1016/j.biomaterials.2017.06.03628666098
  • Abo-Elfadl MT, Gamal-Eldeen AM, Elshafey MM, et al. Photothermal therapeutic effect of PEGylated gold nano-semicubes in chemically-induced skin cancer in mice. J Photochem Photobiol B. 2016;164:21–29. doi:10.1016/j.jphotobiol.2016.09.01227636008
  • Jia Y-P, Ma B-Y, Wei X-W, Qian Z-Y. The in vitro and in vivo toxicity of gold nanoparticles. Chin Chem Lett. 2017;28(4):691–702. doi:10.1016/j.cclet.2017.01.021
  • Fratoddi I, Venditti I, Cametti C, Russo MV. How toxic are gold nanoparticles? The state-of-the-art. Nano Res. 2015;8(6):1771–1799. doi:10.1007/s12274-014-0697-3
  • Falagan-Lotsch P, Grzincic EM, Murphy CJ. One low-dose exposure of gold nanoparticles induces long-term changes in human cells. Proc Natl Acad Sci U S A. 2016;113(47):13318–13323. doi:10.1073/pnas.161640011327821760
  • Gerber A, Bundschuh M, Klingelhofer D, Groneberg DA. Gold nanoparticles: recent aspects for human toxicology. J Occup Med Toxicol. 2013;8:32. doi:10.1186/1745-6673-8-3224330512
  • Sabella S, Carney RP, Brunetti V, et al. A general mechanism for intracellular toxicity of metal-containing nanoparticles. Nanoscale. 2014;6(12):7052–7061. doi:10.1039/c4nr01234h24842463
  • Qu Y, Lu X. Aqueous synthesis of gold nanoparticles and their cytotoxicity in human dermal fibroblasts-fetal. Biomed Mater. 2009;4(2):025007. doi:10.1088/1748-6041/4/2/02500719258699
  • Wei X-L, Mo Z-H, Li B, Wei J-M. Disruption of HepG2 cell adhesion by gold nanoparticle and Paclitaxel disclosed by in situ QCM measurement. Colloids Surf B Biointerfaces. 2007;59(1):100–104. doi:10.1016/j.colsurfb.2007.04.01617566716
  • Babin C, Gagnaire P-A, Pavey SA, Bernatchez L. RAD-seq reveals patterns of additive polygenic variation caused by spatially-varying selection in the american eel (Anguilla rostrata). Genome Biol Evol. 2017;9(11):2974–2986. doi:10.1093/gbe/evx22629136139
  • Hwang JH, Kim SJ, Kim Y-H, et al. Susceptibility to gold nanoparticle-induced hepatotoxicity is enhanced in a mouse model of nonalcoholic steatohepatitis. Toxicology. 2012;294(1):27–35. doi:10.1016/j.tox.2012.01.01322330258
  • Kim KT, Zaikova T, Hutchison JE, Tanguay RL. Gold nanoparticles disrupt zebrafish eye development and pigmentation. Toxicological sciences: an official journal of the Society of Toxicology. 2013;133(2):275–288.23549158
  • Vecchio G, Galeone A, Brunetti V, et al. Mutagenic effects of gold nanoparticles induce aberrant phenotypes in Drosophila melanogaster. Nanomedicine. 2012;8(1):1–7. doi:10.1016/j.nano.2011.11.00122094122
  • Tsyusko OV, Unrine JM, Spurgeon D, et al. Toxicogenomic responses of the model organism Caenorhabditis elegans to gold nanoparticles. Environ Sci Technol. 2012;46(7):4115–4124. doi:10.1021/es203310822372763
  • Yang Y, Qin Z, Zeng W, et al. Toxicity assessment of nanoparticles in various systems and organs. Nanotechnol Rev. 2016;6:279–289.