680
Views
19
CrossRef citations to date
0
Altmetric
Original Research

Improving The Oral Absorption Of Nintedanib By A Self-Microemulsion Drug Delivery System: Preparation And In Vitro/In Vivo Evaluation

, , , , ORCID Icon, , , & show all
Pages 8739-8751 | Published online: 06 Nov 2019

References

  • Ley B, Collard HR, King TE Jr. Clinical course and prediction of survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2011;183(4):431–440. doi:10.1164/rccm.201006-0894CI20935110
  • Martinez FJ, Safrin S, Weycker D, et al. The clinical course of patients with idiopathic pulmonary fibrosis. Ann Intern Med. 2005;142:963–967. doi:10.7326/0003-4819-142-12_Part_1-200506210-0000515968010
  • Hilberg F, Tontsch-Grunt U, Baum A, et al. Triple angiokinase inhibitor nintedanib directly inhibits tumor cell growth and induces tumor shrinkage via blocking oncogenic receptor tyrosine kinases. J Pharmacol Exp Ther. 2018;364:494–503. doi:10.1124/jpet.117.24412929263244
  • Hilberg F, Roth GJ, Krssak M, et al. BIBF 1120: triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy. Cancer Res. 2008;68:4774–4782. doi:10.1158/0008-5472.CAN-07-630718559524
  • Porta R, Borea R, Coelho A, et al. FGFR a promising druggable target in cancer: molecularbiology and new drugs. Crit Rev Oncol Hematol. 2017;113:256–267. doi:10.1016/j.critrevonc.2017.02.01828427515
  • Richeldi L, Du Bois RM, Raghu G, et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med. 2014;370(22):2071–2082. doi:10.1056/NEJMoa140258424836310
  • Okamoto I, Miyazaki M, Takeda M, et al. Tolerability of nintedanib (BIBF 1120) in combination with docetaxel: a phase 1 study in japanese patients with previously treated non–small-cell lung cancer. J Thorac Oncol. 2015;10(2):346–352. doi:10.1097/JTO.000000000000039525299232
  • Eisen T, Shparyk Y, Jones R, et al. Phase II efficacy and safety study of nintedanib versus sunitinib in previously untreated renal cell carcinoma (RCC) patients. J Clin Oncol. 2013;31(15):4506. doi:10.1200/JCO.2013.49.0219
  • Capdevila J, Carrato A, Tabernero J, Grande E. What could Nintedanib (BIBF 1120), a triple inhibitor of VEGFR, PDGFR, and FGFR, add to the current treatment options for patients with metastatic colorectal cancer. Crit Rev Oncol Hematol. 2014;92(2):83–106. doi:10.1016/j.critrevonc.2014.05.00424924525
  • McCormack PL. Nintedanib: first global approval. Drugs. 2015;75(1):129–139. doi:10.1007/s40265-014-0335-025430078
  • Dallinger C, Trommeshauser D, Marzin K, Liesener A, Kaiser R, Stopfer P. Pharmacokinetic properties of nintedanib in healthy volunteers and patients with advanced cancer. J Clin Pharmacol. 2016;56(11):1387–1394. doi:10.1002/jcph.75227093880
  • Wang H, Li Q, Deng W, et al. Self-nanoemulsifying drug delivery system of\r, trans\r, -cinnamic acid: formulation development and pharmacodynamic evaluation in alloxan-induced type 2 diabetic rat model. Drug Develop Res. 2015;76(2):82–93. doi:10.1002/ddr.21244
  • Omari-Siaw E, Zhu Y, Wang H, et al. Hypolipidemic potential of perillaldehyde-loaded self-nanoemulsifying delivery system in high-fat diet induced hyperlipidemic mice: formulation, in vitro and in vivo evaluation. Eur J Pharm Sci. 2016;85:112–122. doi:10.1016/j.ejps.2016.02.00326851382
  • Gu Z, Shi X, Omari-Siaw E, et al. Self-microemulsifying sustained-release pellet of Ginkgo biloba extract: preparation, in?vitro drug release and pharmacokinetics study in beagle dogs. J Drug Deliv Sci Tec. 2017;37:184–193. doi:10.1016/j.jddst.2017.01.002
  • Zhang Z, Huang J, Jiang S, et al. A high-drug-loading self-assembled nanoemulsion enhances the oral absorption of probucol in rats. J Pharm Sci. 2013;102(4):1301–1306. doi:10.1002/jps.2346023378294
  • Guo F, Zhong H, He J, et al. Self-microemulsifying drug delivery system for improved oral bioavailability of dipyridamole: preparation and evaluation. Arch Pharm Res. 2011;34(7):1113–1123. doi:10.1007/s12272-011-0709-821811918
  • Lesheng T, Huan Y, Yingkun C, et al. Enhance bioavailability of nifidepine by self-emulsifying drug delivery system. J Investig Med. 2013;61(4):S14.
  • You X, Xing Q, Tuo J, et al. Optimizing surfactant content to improve oral bioavailability of ibuprofen in microemulsions: just enough or more than enough. Int J Pharm. 2014;471(1–2):276–284. doi:10.1016/j.ijpharm.2014.05.03124858390
  • Haiyan L, Yonggang T, Lixia Y, et al. Dissolution evaluation in vitro and bioavailability in vivo of self-microemulsifying drug delivery systems for pH-sensitive drug loratadine. J Microencapsul. 2015;32:175–180. doi:10.3109/02652048.2014.98534025413271
  • Valicherla GR, Valicherla GR, Syed AA, et al. Formulation optimization of Docetaxel loaded self-emulsifying drug delivery system to enhance bioavailability and anti-tumor activity. Sci Rep. 2016;6:1–11. doi:10.1038/srep2689528442746
  • Kerns EH, Di L, Petusky S, Farris M, Ley R, Jupp P. Combined application of parallel artificial membrane permeability assay and Caco-2 permeability assays in drug discovery. J Pharm Sci. 2004;93(6):1440–1453. doi:10.1002/jps.2007515124203
  • Matsumoto T, Kaifuchi N, Mizuhara Y, Warabi E, Watanabe J. Use of a Caco-2 permeability assay to evaluate the effects of several Kampo medicines on the drug transporter P-glycoprotein. J Nat Med. 2018;72(4):897–904. doi:10.1007/s11418-018-1222-x29797179
  • Liu H, Du K, Li D, et al. A high bioavailability and sustained-release nano-delivery system for nintedanib based on electrospray technology. Int J Nanomed. 2018;13:8379–8393. doi:10.2147/IJN
  • Moreno-Bautista G, Tam KC. Evaluation of dialysis membrane process for quantifying the in vitro drug-release from colloidal drug carriers. Colloids Surf A Physicochem Eng Asp. 2011;389(1–3):299–303. doi:10.1016/j.colsurfa.2011.07.032
  • Zorzan M, Collazuol D, Ribaudo G, et al. Biological effects and potential mechanisms of action of Pistacia lentiscus Chios mastic extract in Caco-2 cell model. J Funct Foods. 2019;54:92–97. doi:10.1016/j.jff.2019.01.007
  • Doluisio JT, Billups NF, Dittert LW, Sugita ET, Swintosky JV. Drug absorption: I. An in situ rat gut technique yielding realistic absorption rates. J Pharm Sci. 1969;58:1196–1200. doi:10.1002/jps.26005810065394662
  • Doluisio JT, Tan GH, Billups NF, et al. Drug absorption II: effect of fasting on intestinal drug absorption. J Pharm Sci. 1969;58(10):1200–1202. doi:10.1002/jps.26005810075349102
  • Lozoya-Agullo I, Zur M, Fine-Shamir N. Investigating drug absorption from the colon: single-pass vs. Doluisio approaches to in-situ rat large-intestinal perfusion. Int J Pharm. 2017;527:135–141. doi:10.1016/j.ijpharm.2017.05.01828501438
  • Porter CJ, Pouton CW, Cuine JF, Charman WN. Enhancing intestinal drug solubilisation using lipid-based delivery systems. Adv Drug Deliver Rev. 2008;60(6):673–691. doi:10.1016/j.addr.2007.10.014
  • Man N, Wang QL, Li HH, et al. Improved oral bioavailability of myricitrin by liquid self-microemulsifying drug delivery systems. J Drug Deliv Sci Tec. 2019;52:597–606. doi:10.1016/j.jddst.2019.05.003
  • Claudia M, Thomas H, Flavia L. In vivo evaluation of an oral self-emulsifying drug delivery system (SMEDDS) for exenatide. J Control Release. 2018;277:165–172. doi:10.1016/j.jconrel.2018.03.01829574041
  • Menzel C, Bernkop-Schnürch A. Enzyme decorated drug carriers: targeted swords to cleave and overcome the mucus barrier. Adv Drug Deliv Rev. 2018;124:164–174. doi:10.1016/j.addr.2017.10.00429079537
  • Evren G, Hatice YK, Cinel K. The novel oral imatinib microemulsions: physical properties, cytotoxicity activities and improved Caco-2 cell permeability. J Microencapsul. 2013;30(2):132–142. doi:10.3109/02652048.2012.70495222789009
  • Detroyer A, Stokbroekx S, Bohets H, et al. Fast monolithic micellar liquid chromatography: an alternative drug permeability assessing method for high-throughput screening. Anal Chem. 2004;76(24):7304–7309. doi:10.1021/ac048944k15595873
  • Wang X, Meng M, Gao L, Liu T, Xu Q, Zeng S. Permeation of astilbin and taxifolin in Caco-2 cell and their effects on the P-gp. Int J Pharm. 1969;58:1–8. doi:10.1016/j.ijpharm.2009.05.022
  • Yin YM, Cui FD, Mu CF, et al. Docetaxel microemulsion for enhanced oral bioavailability: preparation and in vitro and in vivo evaluation. J Control Release. 2009;140:86–94. doi:10.1016/j.jconrel.2009.08.01519709639
  • Masaoka Y, Tanaka Y, Kataoka M, Sakuma S, Yamashita S. Site of drug absorption after oral administration: assessment of membrane permeability and luminal concentration of drugs in each segment of gastrointestinal tract. Eur J Pharm Sci. 2006;29(3–4):240–250. doi:10.1016/j.ejps.2006.06.00416876987
  • Sjogren E, Abrahamsson B, Augustijns P, et al. In vivo methods for drug absorption—comparative physiologies, model selection, correlations with in vitro methods (IVIVC), and applications for formulation/API/excipient characterization including food effects. Eur J Pharm Sci. 2014;57:99–151. doi:10.1016/j.ejps.2014.02.01024637348
  • Lozoya-Agullo I, González-álvarez I, González-álvarez M, et al. In situ perfusion model in rat colon for drug absorption studies: comparison with small intestine and Caco-2 cell model. J Pharm Sci. 2015;104(9):3136–3145. doi:10.1002/jps.2444725891783
  • Jo K, Kim H, Khadka P, et al. Enhanced intestinal lymphatic absorption of saquinavir through supersaturated self-microemulsifying drug delivery systems. Asian J Pharm Sci. 2019. doi:10.1016/j.ajps.2018.11.009