134
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Recording Electrical Brain Activity with Novel Stretchable Electrodes Based on Supersonic Cluster Beam Implantation Nanotechnology on Conformable Polymers

ORCID Icon, ORCID Icon, , , , ORCID Icon, , , , , & show all
Pages 10079-10089 | Published online: 24 Dec 2019

References

  • Borton D, Micera S, Millan JDR, Courtine G. Personalized neuroprosthetics. Sci Transl Med. 2013;5(210):210.
  • Cif L, Vasques X, Gonzalez V, et al. Long-term follow-up of DYT1 dystonia patients treated by deep brain stimulation: an open-label study. Mov Disord. 2010;25(3):289–299. doi:10.1002/mds.2280220063427
  • MacDonald DB, Dong C, Quatrale R, et al. Recommendations of the International Society of Intraoperative Neurophysiology for intraoperative somatosensory evoked potentials. Clin Neurophysiol. 2019;130(1):161–179. doi:10.1016/j.clinph.2018.10.00830470625
  • Cardinale F, Cossu M, Castana L, et al. Stereoelectroencephalography: surgical methodology, safety, and stereotactic application accuracy in 500 procedures. Neurosurgery. 2013;72(3):353–366.23168681
  • Gonzalez-Martinez J, Bulacio J, Alexopoulos A, Jehi L, Bingaman W, Najm I. Stereoelectroencephalography in the “difficult to localize” refractory focal epilepsy: early experience from a North American epilepsy center. Epilepsia. 2013;54(2):323–330.23016576
  • Marras C, Rizzi M, Ravagnan L, et al. Morphological and chemical analysis of a deep brain stimulation electrode explanted from a dystonic patient. J Neural Transm. 2013;120(10):1425–1431.23563791
  • Khodagholy D, Gelinas JN, Thesen T, et al. NeuroGrid: recording action potentials from the surface of the brain. Nat Neurosci. 2015;18(2):310–315.25531570
  • Ravagnan L, Divitini G, Rebasti S, Marelli M, Piseri P, Milani P. Poly(methyl methacrylate)–palladium clusters nanocomposite formation by supersonic cluster beam deposition: a method for microstructured metallization of polymer surfaces. J Phys D Appl Phys. 2009;42(8):082002.
  • Marelli M, Divitini G, Collini C, et al. Flexible and biocompatible microelectrode arrays fabricated by supersonic cluster beam deposition on SU-8. J Micromech Microeng. 2011;21(4):045013.
  • Corbelli G, Ghisleri C, Marelli M, et al. Highly deformable nanostructured elastomeric electrodes with improving conductivity upon cyclical stretching. Adv Mater. 2011;23:4504–4508. doi:10.1002/adma.20110246321997303
  • de Curtis M, Pare D, Llinas RR. The electrophysiology of the olfactory-hippocampal circuit in the isolated and perfused adult mammalian brain in vitro. Hippocampus. 1991;1(4):341–354.1669314
  • de Curtis M, Biella G, Buccellati C, Folco G. Simultaneous investigation of the neuronal and vascular compartments in the guinea pig brain isolated in vitro. Brain Res Protoc. 1998;3(2):221–228. doi:10.1016/S1385-299X(98)00044-0
  • Biella G, de Curtis M. Associative synaptic potentials in the piriform cortex of the isolated guinea-pig brain in vitro. Eur J Neurosci. 1995;7(1):54–64. doi:10.1111/ejn.1995.7.issue-17711937
  • Desai SA, Rolston JD, Guo L, Potter SM. Improving impedance of implantable microwire multi-electrode arrays by ultrasonic electroplating of durable platinum black. Front Neuroeng. 2010;3:5.20485478
  • Boretius T, Jurzinsky T, Koehler C, Kerzenmacher S, Hillebrecht H, Stieglitz T. High-porous platinum electrodes for functional electrical stimulation. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; IEEE; 2011:5404–5407. Boston, MA, USA.
  • Harris AR, Allitt BJ, Paolini AG. Predicting neural recording performance of implantable electrodes. Analyst. 2019;144(9):2973–2983. doi:10.1039/C8AN02214C30888346
  • Cogan SF. Neural stimulation and recording electrodes. Annu Rev Biomed Eng. 2008;10(1):275–309. doi:10.1146/annurev.bioeng.10.061807.16051818429704
  • Boehler C, Stieglitz T, Asplund M. Nanostructured platinum grass enables superior impedance reduction for neural microelectrodes. Biomaterials. 2015;67:346–353.26232883
  • Vanhatalo S, Voipio J, Kaila K. Full-band EEG (FbEEG): an emerging standard in electroencephalography. Clin Neurophysiol. 2005;116(1):1–8. doi:10.1016/j.clinph.2004.09.01515589176
  • Ikeda A, Taki W, Kunieda T, et al. Focal ictal direct current shifts in human epilepsy as studied by subdural and scalp recording. Brain. 1999;122(5):827–838.10355669
  • Kuck A, Stegeman DF, van Asseldonk EHF. Modeling trans-spinal direct current stimulation in the presence of spinal implants. IEEE Trans Neural Syst Rehabil Eng. 2019;27:790–797.30802867
  • Kim D-H, Viventi J, Amsden JJ, et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater. 2010;9(6):511–517. doi:10.1038/nmat274520400953
  • Fattahi P, Yang G, Kim G, Abidian MRA. Review of organic and inorganic biomaterials for neural interfaces. Adv Mater. 2014;26(12):1846–1885.24677434
  • van den Brand R, Heutschi J, Barraud Q, et al. Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science. 2012;336(6085):1182–1185. doi:10.1126/science.121741622654062
  • Park D-W, Schendel AA, Mikael S, et al. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications. Nat Commun. 2014;5(1):5258. doi:10.1038/ncomms625825327513
  • Barrese JC, Rao N, Paroo K, et al. Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates. J Neural Eng. 2013;10(6):066014. doi:10.1088/1741-2560/10/6/06601424216311
  • Moshayedi P, Ng G, Kwok JCF, et al. The relationship between glial cell mechanosensitivity and foreign body reactions in the central nervous system. Biomaterials. 2014;35(13):3919–3925. doi:10.1016/j.biomaterials.2014.01.03824529901
  • Potter KA, Jorfi M, Householder KT, Foster EJ, Weder C, Capadona JR. Curcumin-releasing mechanically adaptive intracortical implants improve the proximal neuronal density and blood–brain barrier stability. Acta Biomater. 2014;10(5):2209–2222. doi:10.1016/j.actbio.2014.01.01824468582
  • Minev IR, Musienko P, Hirsch A, et al. Electronic dura mater for long-term multimodal neural interfaces. Science. 2015;347(6218):159–163. doi:10.1126/science.126031825574019
  • Lee WS, Lee JK, Lee SA, Kang JK, Ko TS. Complications and results of subdural grid electrode implantation in epilepsy surgery. Surg Neurol. 2000;54(5):346–351.11165607
  • Onal C, Otsubo H, Araki T, et al. Complications of invasive subdural grid monitoring in children with epilepsy. J Neurosurg. 2003;98(5):1017–1026.12744361
  • Simon SL, Telfeian A, Duhaime A-C. Complications of invasive monitoring used in intractable pediatric epilepsy. Pediatr Neurosurg. 2003;38(1):47–52.12476027