220
Views
11
CrossRef citations to date
0
Altmetric
Original Research

In Vitro Intestinal Uptake And Permeability Of Fluorescently-Labelled Hyaluronic Acid Nanogels

ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 9077-9088 | Published online: 21 Nov 2019

References

  • Sarmento B, Andrade F, Da Silva SB, Rodrigues F, Das Neves J, Ferreira D. Cell-based in vitro models for predicting drug permeability. Expert Opin Drug Metab Toxicol. 2012;8:607–621. doi:10.1517/17425255.2012.67358622424145
  • Antunes F, Andrade F, Ferreira D, Mørck Nielsen H, Sarmento B. Models to predict intestinal absorption of therapeutic peptides and proteins. Curr Drug Metab. 2012;14:4–20. doi:10.2174/1389200211309010004
  • Li AP. Screening for human ADME/Tox drug properties in drug discovery. Drug Discov Today. 2001;6:357–366. doi:10.1016/S1359-6446(01)01712-311267922
  • Hidalgo IJ, Raub TJ, Borchardt RT. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology. 1989;96:736–749. doi:10.1016/S0016-5085(89)80072-12914637
  • YU Q, YANG Q. Diversity of tight junctions (TJs) between gastrointestinal epithelial cells and their function in maintaining the mucosal barrier. Cell Biol Int. 2009;33:78–82. doi:10.1016/j.cellbi.2008.09.00718938254
  • Kong S, Zhang YH, Zhang W. Regulation of intestinal epithelial cells properties and functions by amino acids. Biomed Res Int. 2018;2018:1–10.
  • Lea T. Caco-2 cell line In: Verhoeckx K, editor. The Impact of Food Bioactives on Health. Springer International Publishing; 2015:103–111. doi:10.1007/978-3-319-16104-4_10
  • Shah P, Jogani V, Bagchi T, Misra A. Role of Caco-2 cell monolayers in prediction of intestinal drug absorption. Biotechnol Prog. 2006;22:186–198.16454510
  • Engle MJ, Goetz GS, Alpers DH. Caco-2 cells express a combination of colonocyte and enterocyte phenotypes. J Cell Physiol. 1998;174:362–369. doi:10.1002/(ISSN)1097-46529462698
  • Walter E, Kissel T. Heterogeneity in the human intestinal cell line Caco-2 leads to differences in transepithelial transport. Eur J Pharm Sci. 1995;3:215–230. doi:10.1016/0928-0987(95)00010-B
  • Artursson P, Palm K, Luthman K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Deliv Rev. 2001;46:27–43. doi:10.1016/S0169-409X(00)00128-911259831
  • Lozoya-Agullo I, Araújo F, González-Álvarez I, et al. Usefulness of Caco-2/HT29-MTX and Caco-2/HT29-MTX/Raji B coculture models to predict intestinal and colonic permeability compared to Caco-2 monoculture. Mol Pharm. 2017;14:1264–1270. doi:10.1021/acs.molpharmaceut.6b0116528263609
  • Hilgendorf C, Spahn‐Langguth H, Regårdh CG, Lipka E, Amidon GL, Langguth P. Caco‐2 versus Caco‐2/HT29‐MTX co‐cultured cell lines: permeabilities via diffusion, inside‐ and outside‐directed carrier‐mediated transport. J Pharm Sci. 2000;89:63–75. doi:10.1002/(SICI)1520-6017(200001)89:1<63::AID-JPS7>3.0.CO;2-610664539
  • Béduneau A, Tempesta C, Fimbel S, et al. A tunable Caco-2/HT29-MTX co-culture model mimicking variable permeabilities of the human intestine obtained by an original seeding procedure. Eur J Pharm Biopharm. 2014;87:290–298. doi:10.1016/j.ejpb.2014.03.01724704198
  • Mahler GJ, Shuler ML, Glahn RP. Characterization of Caco-2 and HT29-MTX cocultures in an in vitro digestion/cell culture model used to predict iron bioavailability. J Nutr Biochem. 2009;20:494–502. doi:10.1016/j.jnutbio.2008.05.00618715773
  • Walter E, Janich S, Roessler BJ, Hilfinger JM, Amidon GL. HT29-MTX/Caco-2 cocultures as an in vitro model for the intestinal epithelium: in vitro–in vivo correlation with permeability data from rats and humans. J Pharm Sci. 1996;85:1070–1076. doi:10.1021/js960110x8897273
  • Pedrosa SS, Gonçalves C, David L, Gama M. A novel crosslinked hyaluronic acid nanogel for drug delivery. Macromol Biosci. 2014;14:1556–1568. doi:10.1002/mabi.v14.1125088667
  • Manju S, Sreenivasan K. Conjugation of curcumin onto hyaluronic acid enhances its aqueous solubility and stability. J Colloid Interface Sci. 2011;359:318–325. doi:10.1016/j.jcis.2011.03.07121492865
  • Huang G, Huang H. Application of hyaluronic acid as carriers in drug delivery. Drug Deliv. 2018;25:766. doi:10.1080/10717544.2018.145091029536778
  • Chen WYJ, Abatangelo G. Functions of hyaluronan in wound repair. Wound Repair Regen. 1999;7:79–89. doi:10.1046/j.1524-475X.1999.00079.x10231509
  • Turley EA. Hyaluronan-binding proteins and receptors. Adv Drug Deliv Rev. 1991;7:257–264. doi:10.1016/0169-409X(91)90005-W
  • Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B. CD44 is the principal cell surface receptor for hyaluronate. Cell. 1990;61:1303–1313. doi:10.1016/0092-8674(90)90694-A1694723
  • Wei X, Senanayake TH, Warren G, Vinogradov SV. Hyaluronic acid-based nanogel–drug conjugates with enhanced anticancer activity designed for the targeting of CD44-positive and drug-resistant tumors. Bioconjug Chem. 2013;24:658–668. doi:10.1021/bc300632w23547842
  • Snipstad S, Hak S, Baghirov H, et al. Labeling nanoparticles: dye leakage and altered cellular uptake. Cytom Part A. 2017;91:760–766. doi:10.1002/cyto.a.22853
  • Swift JL, Cramb DT. Nanoparticles as fluorescence labels: is size all that matters? Biophys J. 2008;95:865–876. doi:10.1529/biophysj.107.12768818390610
  • Kim YS, Ho SB. Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep. 2010;12:319–330. doi:10.1007/s11894-010-0131-220703838
  • Gagnon M, Zihler Berner A, Chervet N, Chassard C, Lacroix C. Comparison of the Caco-2, HT-29 and the mucus-secreting HT29-MTX intestinal cell models to investigate Salmonella adhesion and invasion. J Microbiol Methods. 2013;94:274–279. doi:10.1016/j.mimet.2013.06.02723835135
  • Gaillard PJ, De Boer AG. Relationship between permeability status of the blood-brain barrier and in vitro permeability coefficient of a drug. Eur J Pharm Sci. 2000;12:95–102. doi:10.1016/S0928-0987(00)00152-411102736
  • Hanaor D, Michelazzi M, Leonelli C, Sorrell CC. The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2. J Eur Ceram Soc. 2012;32:235–244. doi:10.1016/j.jeurceramsoc.2011.08.015
  • Hotze EM, Phenrat T, Lowry GV. Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J Environ Qual. 2010;39:1909. doi:10.2134/jeq2009.046221284288
  • Schäfer B, Hecht M, Harting J, Nirschl H. Agglomeration and filtration of colloidal suspensions with DVLO interactions in simulation and experiment. J Colloid Interface Sci. 2010;349:186–195. doi:10.1016/j.jcis.2010.05.02520570277
  • Bannunah AM, Vllasaliu D, Lord J, Stolnik S. Mechanisms of nanoparticle internalization and transport across an intestinal epithelial cell model: effect of size and surface charge. Mol Pharm. 2014. doi:10.1021/mp500439c
  • Yin Win K, Feng -S-S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials. 2005;26:2713–2722. doi:10.1016/j.biomaterials.2004.07.05015585275
  • Hansson GC. Role of mucus layers in gut infection and inflammation. Curr Opin Microbiol. 2012. doi:10.1016/j.mib.2011.11.002
  • Boegh M, Nielsen HM. Mucus as a barrier to drug delivery - understanding and mimicking the barrier properties. Basic Clin Pharmacol Toxicol. 2015;116:179–186. doi:10.1111/bcpt.2015.116.issue-325349046
  • Homayun B, Lin X, Choi H-J, Homayun B, Lin X, Choi H-J. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics. 2019;11:129. doi:10.3390/pharmaceutics11030129
  • Boddupalli BM, Mohammed ZNK, Nath RA, Banji D. Mucoadhesive drug delivery system: an overview. J Adv Pharm Technol Res. 2010;1:381–387. doi:10.4103/0110-5558.7643622247877
  • Netsomboon K, Bernkop-Schnürch A. Mucoadhesive vs. mucopenetrating particulate drug delivery. Eur J Pharm Biopharm. 2016;98:76–89. doi:10.1016/j.ejpb.2015.11.00326598207
  • Arora S, Bisen G, Budhiraja R. Mucoadhesive and muco-penetrating delivery systems for eradication of helicobacter pylori. Asian J Pharm. 2012;6:18. doi:10.4103/0973-8398.100127
  • Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev. 2012;64:557–570. doi:10.1016/j.addr.2011.12.00922212900
  • Ubelmann F, Chamaillard M, El-Marjou F, et al. Enterocyte loss of polarity and gut wound healing rely upon the F-actin-severing function of villin. Proc Natl Acad Sci. 2013;110:E1380–E1389. doi:10.1073/pnas.121844611023520048
  • Kim HJ, Ingber DE. Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr Biol. 2013;5:1130. doi:10.1039/c3ib40126j