149
Views
8
CrossRef citations to date
0
Altmetric
Original Research

Electrospun Poly (Aspartic Acid)-Modified Zein Nanofibers for Promoting Bone Regeneration

ORCID Icon, ORCID Icon, , , , , , ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, , & ORCID Icon show all
Pages 9497-9512 | Published online: 02 Dec 2019

References

  • Wei T, Dan L, Yuanman Y, et al. Bioinspired trimodal macro/micro/nano-porous scaffolds loading rhBMP-2 for complete regeneration of critical size bone defect. Acta Biomater. 2016;32:309–323. doi:10.1016/j.actbio.2015.12.00626689464
  • Yun L, Li-Zhi D, Hai-Peng S, et al. Sustained dual release of placental growth factor-2 and bone morphogenic protein-2 from heparin-based nanocomplexes for direct osteogenesis. Int J Nanomed. 2016;11:1147–1158.
  • Yuan Z, Lin Z, Lei Y, et al. “Click” chemistry in polymeric scaffolds: bioactive materials for tissue engineering. J Controlled Release. 2018;273:160–179. doi:10.1016/j.jconrel.2018.01.023
  • Jian D, Qingshen S, Jin-Ye W. Basic study of corn protein, zein, as a biomaterial in tissue engineering, surface morphology and biocompatibility. Biomaterials. 2004;25:4691–4697. doi:10.1016/j.biomaterials.2003.10.08415120515
  • Lena V, Liliana L, Judith AR, et al. Electrospun Zein Fibers Incorporating Poly (glycerol sebacate) for soft tissue engineering. Nanomaterials. 2018;8:150–166. doi:10.3390/nano8030150
  • Laura RA, Alessandro P, Lorena RP, et al. Molecular bionics-engineering biomaterials at the molecular level using biological principles. Biomaterials. 2019;192:26–104. doi:10.1016/j.biomaterials.2018.10.04430419394
  • Sara S. Aspartic acid nucleates the apatite crystallites of bone: a hypothesis. Bone. 2004;35:108–113. doi:10.1016/j.bone.2004.02.02015207746
  • Elisa B, Paola T, Massimo G, et al. Nanocomposites of hydroxyapatite with aspartic acid and glutamic acid and their interaction with osteoblast-like cells. Biomaterials. 2006;27:4428–4433. doi:10.1016/j.biomaterials.2006.04.01916682075
  • Kazuma O, Atsushi I, Kenichiro T, et al. Development of novel radiogallium-labeled bone imaging agents using oligo-aspartic acid peptides as carriers. PLoS One. 2013;8:1–9.
  • Brahatheeswaran D, Aby CP, Yutaka N, et al. Biomimetic smart nanocomposite: in vitro biological evaluation of zein electrospun fluorescent nanofiber encapsulated CdS quantum dots. Biofabrication. 2012;4:1–14.
  • Ryan JW, Jason AB. Advances in nanofibrous scaffolds for biomedical applications: from electrospinning to self-assembly. Nano Today. 2014;9:722–742. doi:10.1016/j.nantod.2014.10.002
  • Lina C, Casey Y, Zijian Z. Functional polymer surfaces for controlling cell behaviors. Mater Today. 2018;21:38–59. doi:10.1016/j.mattod.2017.07.002
  • Min SK, Dong HL, Jin J, et al. Topographically defined, biodegradable nanopatterned patches to regulate cell fate and acceleration of bone regeneration. ACS Appl Mater Interfaces. 2018;10:1–11.29320812
  • Cai-Yun Z, Wei Z, Li-Bo M, et al. Biomimetic mineralization of zein/calcium phosphate nanocomposite nanofibrous mats for bone tissue scaffolds. CrystEngComm. 2014;16:9513–9519. doi:10.1039/C4CE01287A
  • Shixuan C, Ruiquan L, Xiaoran L, et al. Electrospinning: an enabling nanotechnology platform for drug delivery and regenerative medicine. Adv Drug Deliv Rev. 2018;132:188–214. doi:10.1016/j.addr.2018.05.00129729295
  • Tas AC, Bhaduri SB. Rapid coating of Ti6Al4V at room temperature with a calcium phosphate solution similar to 10× simulated body fluid. J Mater Res. 2004;19:2742–2749. doi:10.1557/JMR.2004.0349
  • Haipeng S, Jinming W, Feilong D, et al. Co-delivery and controlled release of stromal cell‑derived factor‑1α chemically conjugated on collagen scaffolds enhances bone morphogenetic protein‑2‑driven osteogenesis in rats. Mol Med Rep. 2016;14:737–745. doi:10.3892/mmr.2016.533927220358
  • Qingqing Y, Jaqueline GLC, Tao X, et al. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Biomaterials. 2017;115:115–159.27886552
  • Patrick PS, James DK, Simon Y, et al. Evaluation of bone regeneration using the rat critical size calvarial defect. Nat Protoc. 2012;7:1918–1929. doi:10.1038/nprot.2012.11323018195
  • Vo TN, Shah SR, Lu S, et al. Injectable dual-gelling cell-laden composite hydrogels for bone tissue engineering. Biomaterials. 2016;83:1–11. doi:10.1016/j.biomaterials.2015.12.02626773659
  • Swee LL, Willie NHT, Chien WO, et al. Rapid swelling and deswelling of semi-interpenetrating network poly(acrylic acid)/poly(aspartic acid) hydrogels prepared by freezing polymerization. J Appl Polym Sci. 2016;133:1–9.
  • Csaba N, Benjámin G, Timur A, et al. Poly(aspartic acid) with adjustable pH-dependent solubility. Acta Biomater. 2017;49:486–494. doi:10.1016/j.actbio.2016.11.06527915021
  • Masataka N, Joon-Sik P, Woo-Dong J, et al. Study of the quantitative aminolysis reaction of poly(b-benzyl L-aspartate) (PBLA) as a platform polymer for functionality materials. React Funct Polym. 2007;67:1361–1372. doi:10.1016/j.reactfunctpolym.2007.08.009
  • Kokubo T, Kushitani H, Sakka S, et al. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3. J Biomed Mater Res. 1990;24:721–734. doi:10.1002/jbm.8202406072361964
  • Taek GK, Heungsoo S, Dong WL. Biomimetic Scaffolds for Tissue Engineering. Adv Funct Mater. 2012;22:2446–2468. doi:10.1002/adfm.201103083
  • Min SK, Joong-Hyun. K, Rajendra KS, et al. Therapeutic-designed electrospun bone scaffolds: mesoporous bioactive nanocarriers in hollow fiber composites to sequentially deliver dual growth factors. Acta Biomater. 2015;16:103–116. doi:10.1016/j.actbio.2014.12.02825617805
  • Mikaël MM, Priscilla SB, Esra G, et al. Growth Factors engineered for super-affinity to the extracellular matrix enhance tissue healing. Science. 2014;343:885–888. doi:10.1126/science.124766324558160
  • Shengju G, Huajie W, Qingshen S, et al. Mechanical properties and in vitro biocompatibility of porous zein scaffolds. Biomaterials. 2006;27:3793–3799. doi:10.1016/j.biomaterials.2006.02.01916527348
  • Linzhi J, Xiang W, Hang L, et al. Zein Increases the cytoaffinity and biodegradability of scaffolds 3D- printed with zein and poly(ε-caprolactone) composite ink. ACS Appl Mater Interfaces. 2018;10:18551–18559. doi:10.1021/acsami.8b0434429763548
  • Min H, Huiyi J, Rui W, et al. Fabrication of metronidazole loaded poly (e-caprolactone)/zein core/shell nanofiber membranes via coaxial electrospinning for guided tissue regeneration. J Colloid Interface Sci. 2017;490:270–278. doi:10.1016/j.jcis.2016.11.06227914325
  • Kazunori S, Benjamin BR, David AH, et al. Enhanced repair of meniscal hoop structure injuries using an aligned electrospun nanofibrous scaffold combined with a mesenchymal stem cell-derived tissue engineered construct. Biomaterials. 2018;154:74–90. doi:10.1016/j.biomaterials.2017.10.05329120820
  • Fa-Ming C, Xiaohua L. Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci. 2016;53:86–168. doi:10.1016/j.progpolymsci.2015.02.00427022202
  • Coline P, Said J, Pierre ES, et al. Bioactive peptides grafted silicone dressings: a simple and specific method. Mater Today Chem. 2017;4:73–83. doi:10.1016/j.mtchem.2017.02.007
  • Wing-Hin L, Ching-Yee L, Ramin R. A review of chemical surface modification of bioceramics: effects on protein adsorption and cellular response. Colloids Surf B. 2014;122:823–834. doi:10.1016/j.colsurfb.2014.07.029
  • Ya-nan G, Xiong L, Hong-ping Z, et al. dft study of the adsorption of aspartic acid on pure, N-doped, and Ca-Doped Rutile (110) surfaces. J Phys Chem C. 2011;115:18572–18581. doi:10.1021/jp200598t
  • Jun I, Han H, Edwards J, et al. Electrospun fibrous scaffolds for tissue engineering: viewpoints on architecture and fabrication. Int J Mol Sci. 2018;19:744–751. doi:10.3390/ijms19030745
  • Zuwei M, Zhengwei M, Changyou G. Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids Surf B. 2007;60:137–157. doi:10.1016/j.colsurfb.2007.06.019
  • Tadashi K, Hiroaki T. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–2915. doi:10.1016/j.biomaterials.2006.01.01716448693
  • Xiaobin C, Wenge J, Zhisen Z, et al. Unique roles of acidic amino acids in phase transformation of calcium phosphates. J Phys Chem B. 2011;115:1151–1157. doi:10.1021/jp106863q21190387
  • Qianmin O, Yingling M, Fanqiao Y, et al. Zein/gelatin/nanohydroxyapatite nanofibrous scaffolds are biocompatible and promote osteogenic differentiation of human periodontal ligament stem cells. Biomater Sci. 2019;10:1–11.
  • Natália MA, Iva P, Rui LR, et al. Cell behavior through the design of polymer surfaces. Small. 2010;6:2208–2220. doi:10.1002/smll.20100023320848593
  • Shugo Y, Hidemasa K, Nozomi H, et al. Development of PEGylated carboxylic acid-modified polyamidoamine dendrimers as bone-targeting carriers for the treatment of bone diseases. J Controlled Release. 2017;262:10–17. doi:10.1016/j.jconrel.2017.07.018
  • Hakan C, Samet K, Hilal UG, et al. Bone-like mineral nucleating peptide nanofibers induce differentiation of human mesenchymal stem cells into mature osteoblasts. Biomacromolecules. 2014;15:2407–2418. doi:10.1021/bm500248r24878392
  • Itoh D, Yoneda S, Kuroda S, et al. Enhancement of osteogenesis on hydroxyapatite surface coated with synthetic peptide (EEEEEEEPRGDT) in vitro. J Biomed Mater Res Banner. 2002;62:292–298. doi:10.1002/(ISSN)1097-4636
  • Shohei K, Ryuichi F, Yoshihiro W, et al. Selective drug delivery system to bone: small peptide (Asp)6 conjugation. J Bone Miner Res. 2000;15:936–943. doi:10.1359/jbmr.2000.15.5.93610804024
  • Lu C, Ping-Guo D, Hui-Ren W, et al. Degradation and osteogenic potential of a novel poly(lactic acid)/nano-sized β-tricalcium phosphate scaffold. Int J Nanomedicine. 2012;7:5881–5888. doi:10.2147/IJN.S3812723226019
  • Anne G, Arthur V. Phosphorylated proteins and control over apatite nulcleation, crystal growth and inhibition. Chem Rev. 2009;108:4670–4693.
  • Patricia C, Thomas W. Impact of side chain polarity on non-stoichiometric nano-hydroxyapatite surface functionalization with amino acids. Sci Rep. 2018;8:12700–12711. doi:10.1038/s41598-018-31058-530140033
  • Nikolaos M, Ana F, Molly SS. Biomaterials for cell transplantation. Nat Rev Mater. 2018;3:441–457. doi:10.1038/s41578-018-0057-0
  • Tao J, Xiaohua Y, Erica JC, et al. Poly aspartic acid peptide-linked PLGA based nanoscale particles: potential for bone-targeting drug delivery applications. Int J Pharm. 2014;475:547–557. doi:10.1016/j.ijpharm.2014.08.06725194353
  • Hasan U, Niki K, Tiejun G, et al. Bisphosphonate conjugation to proteins as a means to impart bone affinity. Biotechnol Prog. 2000;16:258–267. doi:10.1021/bp990154m10753453
  • Barbara P, Dominic W, Michele I, et al. Amino acid synergetic effect on structure, morphology and surface properties of biomimetic apatite nanocrystals. Acta Biomater. 2009;5:1241–1252. doi:10.1016/j.actbio.2008.10.02419083277
  • Congmeng W, Kang Z, Xiaoqiang W, et al. Dissolution of the calcite (104) face under specific calcite−aspartic acid interaction as revealed by in situ atomic force microscopy. Cryst Growth Des. 2012;12:2594–2601. doi:10.1021/cg300194v
  • Hua-Jie W, Sheng-Ju G, Zhi-Xin L, et al. In vivo biocompatibility and mechanical properties of porous zein scaffolds. Biomaterials. 2007;28:3952–3964. doi:10.1016/j.biomaterials.2007.05.01717582490
  • Matthew BM, Jeffrey DH, Achim G, et al. Synthesis and in Vitro hydroxyapatite binding of peptides conjugated to calcium-binding moieties. Biomacromolecules. 2007;8:2237–2243. doi:10.1021/bm070121s17530891
  • Seema A, Joachim HW, Andreas G. Use of electrospinning technique for biomedical applications. Polymer. 2008;49:5603–5621. doi:10.1016/j.polymer.2008.09.014
  • Yang F, Murugan R, Wang S, et al. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials. 2005;26:2603–2610. doi:10.1016/j.biomaterials.2004.06.05115585263
  • Tal D, Brian PT, Daniel SK, et al. nanotechnological strategies for engineering complex tissues. Nat Nanotechnol. 2010;6:13–22. doi:10.1038/nnano.2010.24621151110