121
Views
14
CrossRef citations to date
0
Altmetric
Original Research

Carrier-Free, Dual-Functional Nanorods Via Self-Assembly Of Pure Drug Molecules For Synergistic Chemo-Photodynamic Therapy

, ORCID Icon, , , , ORCID Icon, , , , & ORCID Icon show all
Pages 8665-8683 | Published online: 05 Nov 2019

References

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi:10.3322/caac.2149230207593
  • Wang L, Wang Y, Wong JI, Palacios T, Kong J, Yang HY. Functionalized MoS(2) nanosheet-based field-effect biosensor for label-free sensitive detection of cancer marker proteins in solution. Small. 2014;10(6):1101–1105. doi:10.1002/smll.20130208124474708
  • Hou W, Zhao X, Qian X, et al. pH-sensitive self-assembling nanoparticles for tumor near-infrared fluorescence imaging and chemo-photodynamic combination therapy. Nanoscale. 2016;8(1):104–116. doi:10.1039/c5nr06842h26607263
  • Cai Y, Shen H, Zhan J, et al. Supramolecular “trojan horse” for nuclear delivery of dual anticancer drugs. J Am Chem Soc. 2017;139(8):2876–2879. doi:10.1021/jacs.6b1232228191948
  • Li Y, Lin J, Huang Y, et al. Self-targeted, shape-assisted, and controlled-release self-delivery nanodrug for synergistic targeting/anticancer effect of cytoplasm and nucleus of cancer cells. ACS Appl Mater Interfaces. 2015;7(46):25553–25559. doi:10.1021/acsami.5b0734826529185
  • Zhao C, Cao W, Zheng H, et al. Acid-responsive nanoparticles as a novel oxidative stress-inducing anticancer therapeutic agent for colon cancer. Int J Nanomedicine. 2019;14:1597–1618. doi:10.2147/IJN.S18992330880968
  • Zu Y, Meng L, Zhao X, et al. Preparation of 10-hydroxycamptothecin-loaded glycyrrhizic acid-conjugated bovine serum albumin nanoparticles for hepatocellular carcinoma-targeted drug delivery. Int J Nanomedicine. 2013;8:1207–1222. doi:10.2147/IJN.S4049323569373
  • Li W, Zhang X, Hao X, Jie J, Tian B, Zhang X. Shape design of high drug payload nanoparticles for more effective cancer therapy. Chem Commun. 2013;49(93):10989–10991. doi:10.1039/c3cc46718j
  • Zhang L, Hu Y, Jiang X, Yang C, Lu W, Yang YH. Camptothecin derivative-loaded poly(caprolactone-co-lactide)-b-PEG-b-poly(caprolactone-co-lactide) nanoparticles and their biodistribution in mice. J Control Release. 2004;96(1):135–148. doi:10.1016/j.jconrel.2004.01.01015063036
  • Yang J, Teng Y, Fu Y, Zhang C. Chlorins e6 loaded silica nanoparticles coated with gastric cancer cell membrane for tumor specific photodynamic therapy of gastric cancer. Int J Nanomedicine. 2019;14:5061–5071. doi:10.2147/IJN.S20291031371947
  • Zhang R, Xing R, Jiao T, et al. Carrier-free, chemophotodynamic dual nanodrugs via self-assembly for synergistic antitumor therapy. ACS Appl Mater Interfaces. 2016;8(21):13262–13269. doi:10.1021/acsami.6b0241627176934
  • Hong EJ, Choi DG, Shim MS. Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials. Acta Pharm Sin B. 2016;6(4):297–307. doi:10.1016/j.apsb.2016.01.00727471670
  • Zhu X, Wang H, Zheng L, et al. Upconversion nanoparticle-mediated photodynamic therapy induces THP-1 macrophage apoptosis via ROS bursts and activation of the mitochondrial caspase pathway. Int J Nanomedicine. 2015;10:3719–3736. doi:10.2147/IJN.S8216226045663
  • Ding YF, Li S, Liang L, et al. Highly biocompatible chlorin e6-loaded chitosan nanoparticles for improved photodynamic cancer therapy. ACS Appl Mater Interfaces. 2018;10(12):9980–9987. doi:10.1021/acsami.8b0152229498260
  • Wen Y, Zhang W, Gong N, et al. Carrier-free, self-assembled pure drug nanorods composed of 10-hydroxycamptothecin and chlorin e6 for combinatorial chemo-photodynamic antitumor therapy. In Vivo. Nanoscale. 2017;9(38):14347–14356. doi:10.1039/C7NR03129G28731112
  • Liao L, Liu J, Dreaden EC, et al. A convergent synthetic platform for single-nanoparticle combination cancer therapy: ratiometric loading and controlled release of cisplatin, doxorubicin, and camptothecin. J Am Chem Soc. 2014;136(16):5896–5899. doi:10.1021/ja502011g24724706
  • Qi Z, Shi J, Zhang Z, Cao Y, Li J, Cao S. PEGylated graphene oxide-capped gold nanorods/silica nanoparticles as multifunctional drug delivery platform with enhanced near-infrared responsiveness. Mate Sci Eng C. 2019;104:109889. doi:10.1016/j.msec.2019.109889
  • Song Z, Liu Y, Shi J, et al. Hydroxyapatite/mesoporous silica coated gold nanorods with improved degradability as a multi-responsive drug delivery platform. Mate Sci Eng C. 2018;83:90–98. doi:10.1016/j.msec.2017.11.012
  • Li Y, Liu G, Ma J, et al. Chemotherapeutic drug-photothermal agent co-self-assembling nanoparticles for near-infrared fluorescence and photoacoustic dual-modal imaging-guided chemo-photothermal synergistic therapy. J Control Release. 2017;258:95–107. doi:10.1016/j.jconrel.2017.05.01128501673
  • Qin SY, Zhang AQ, Cheng SX, Rong L, Zhang XZ. Drug self-delivery systems for cancer therapy. Biomaterials. 2017;112:234–247. doi:10.1016/j.biomaterials.2016.10.01627768976
  • Mou Q, Ma Y, Zhu X, Yan D. A small molecule nanodrug consisting of amphiphilic targeting ligand-chemotherapy drug conjugate for targeted cancer therapy. J Control Release. 2016;230:34–44. doi:10.1016/j.jconrel.2016.03.03727040815
  • Zhang J, Liang YC, Lin X, et al. Self-monitoring and self-delivery of photosensitizer-doped nanoparticles for highly effective combination cancer therapy in vitro and in vivo. ACS Nano. 2015;9(10):9741–9756. doi:10.1021/acsnano.5b0251326390118
  • Zhao R, Zheng G, Fan L, et al. Carrier-free nanodrug by co-assembly of chemotherapeutic agent and photosensitizer for cancer imaging and chemo-photo combination therapy. Acta Biomater. 2018;70:197–210. doi:10.1016/j.actbio.2018.01.02829408311
  • Basu A, Kumar GS. Interaction of the dietary pigment curcumin with hemoglobin: energetics of the complexation. Food Funct. 2014;5(8):1949–1955. doi:10.1039/c4fo00295d24964031
  • Hess B, Kutzner C, Van Der Spoel D, Lindahl E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput. 2008;4(3):435–447. doi:10.1021/ct700301q26620784
  • Abel S, Dupradeau FY, Marchi M. Molecular dynamics simulations of a characteristic DPC micelle in water. J Chem Theory Comput. 2012;8(11):4610–4623. doi:10.1021/ct300320726605618
  • Berendsen HJC, Grigera JR, Straatsma TP. The missing term in effective pair potentialst. J Phys Chem. 1987;91(24):6269–6271. doi:10.1021/j100308a038
  • Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys. 2007;126(1):014101. doi:10.1063/1.240842017212484
  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A smooth particle mesh Ewald method. J Chem Phys. 1995;103(19):8577–8593. doi:10.1063/1.470117
  • Zhu YX, Jia HR, Pan GY, Ulrich NW, Chen Z, Wu FG. Development of a light-controlled nanoplatform for direct nuclear delivery of molecular and nanoscale materials. J Am Chem Soc. 2018;140(11):4062–4070. doi:10.1021/jacs.7b1367229406728
  • Rodea-Palomares I, Petre AL, Boltes K, et al. Application of the combination index (CI)-isobologram equation to study the toxicological interactions of lipid regulators in two aquatic bioluminescent organisms. Water Res. 2010;44(2):427–438. doi:10.1016/j.watres.2009.07.02619683324
  • De Lisi R, Lazzara G, Milioto S. Temperature-controlled poly(propylene) glycol hydrophobicity on the formation of inclusion complexes with modified cyclodextrins. A DSC and ITC study. Phys Chem Chem Phys. 2011;13(27):12571–12577. doi:10.1039/c1cp20737g21666930
  • Cai C, Liu M, Yan H, et al. A combined calorimetric, spectroscopic and molecular dynamic simulation study on the inclusion complexation of (E)-piceatannol with hydroxypropyl-β-cyclodextrin in various alcohol+water cosolvents. J Chem Thermodyn. 2019;132:341–351. doi:10.1016/j.jct.2019.01.009
  • Liu M, Chen A, Wang Y, Wang C, Wang B, Sun D. Improved solubility and stability of 7-hydroxy-4-methylcoumarin at different temperatures and pH values through complexation with sulfobutyl ether-beta-cyclodextrin. Food Chem. 2015;168:270–275. doi:10.1016/j.foodchem.2014.07.061.25172710
  • Wang C, Liu M, Yuan L, et al. Calorimetric and spectroscopic studies on temperature- and pH-dependent interactions of stimuli-responsive poly (N-isopropylacrylamide) with piceatannol. J Chem Thermodyn. 2016;98:186–192. doi:10.1016/j.jct.2016.03.022
  • Subramanian S, Ross JBA, Ross PD, Brand L. Investigation of the nature of enzyme-coenzyme interactions in binary and ternary complexes of liver alcohol dehydrogenase with coenzymes, coenzyme analogs, and substrate analogs by ultraviolet absorption and phosphorescence spectroscopy. Biochemistry. 1981;20(14):4086–4093. doi:10.1021/bi00517a0227025890
  • Zhao Y, Chen F, Pan Y, et al. Nanodrug formed by coassembly of dual anticancer drugs to inhibit cancer cell drug resistance. ACS Appl Mater Interfaces. 2015;7(34):19295–19305. doi:10.1021/acsami.5b0534726270258
  • Bao H, Zhang Q, Xu H, Yan Z. Effects of nanoparticle size on antitumor activity of 10-hydroxycamptothecin-conjugated gold nanoparticles: in vitro and in vivo studies. Int J Nanomedicine. 2016;11:929–940. doi:10.2147/IJN.S9642227022260
  • Xiao K, Li Y, Luo J, et al. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials. 2011;32(13):3435–3446. doi:10.1016/j.biomaterials.2011.01.02121295849
  • Chauhan VP, Popovic Z, Chen O, et al. Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. Angew Chem Int Ed. 2011;50(48):11417–11420. doi:10.1002/anie.201104449
  • Gratton SEA, Ropp PA, Pohlhaus PD, et al. The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci USA. 2008;105(33):11613–11618. doi:10.1073/pnas.080176310518697944
  • Du Y, Li Z, Liu Y, Yang Y, Wang L. Nickel-iron phosphides nanorods derived from bimetallic-organic frameworks for hydrogen evolution reaction. Appl Surf Sci. 2018;457:1081–1086. doi:10.1016/j.apsusc.2018.06.167
  • Yang S, You Q, Yang L, et al. Rodlike MSN@Au nanohybrid-modified supermolecular photosensitizer for NIRF/MSOT/CT/MR quadmodal imaging-guided photothermal/photodynamic cancer therapy. ACS Appl Mater Interfaces. 2019;11(7):6777–6788. doi:10.1021/acsami.8b1956530668088
  • Han K, Zhang J, Zhang W, et al. Tumor-triggered geometrical shape switch of chimeric peptide for enhanced in vivo tumor internalization and photodynamic therapy. ACS Nano. 2017;11(3):3178–3188. doi:10.1021/acsnano.7b0021628296387
  • Liu K, Xing R, Zou Q, Ma G, Mohwald H, Yan X. Simple peptide-tuned self-assembly of photosensitizers towards anticancer photodynamic therapy. Angew Chem Int Ed. 2016;55(9):3036–3039. doi:10.1002/anie.201509810
  • Guo Y, Jiang K, Shen Z, et al. A small molecule nanodrug by self-assembly of dual anticancer drugs and photosensitizer for synergistic near-infrared cancer theranostics. ACS Appl Mater Interfaces. 2017;9(50):43508–43519. doi:10.1021/acsami.7b1475529171263
  • Zhang Y, Yang X, Lu Z, Li H, Guo X, Hou W. Self-assembly behavior of amphiphilic poly(ethylene glycol)-conjugated 10-hydroxycamptothecin in water and its cytotoxicity assay. Appl Surf Sci. 2018;459:749–759. doi:10.1016/j.apsusc.2018.08.082
  • Li Q, Liu C, Zhao X, et al. Preparation, characterization and targeting of micronized 10-hydroxycamptothecin-loaded folate-conjugated human serum albumin nanoparticles to cancer cells. Int J Nanomedicine. 2011;6:397–405. doi:10.2147/IJN.S1614421499429
  • Zhang C, Ding Y, Yu LL, Ping Q. Polymeric micelle systems of hydroxycamptothecin based on amphiphilic N-alkyl-N-trimethyl chitosan derivatives. Colloid Surf B Biointerfaces. 2007;55(2):192–199. doi:10.1016/j.colsurfb.2006.11.03117223019
  • Yameen B, Choi WI, Vilos C, Swami A, Shi J, Farokhzad OC. Insight into nanoparticle cellular uptake and intracellular targeting. J Control Release. 2014;190:485–499. doi:10.1016/j.jconrel.2014.06.03824984011
  • Huang P, Lin J, Wang X, et al. Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Adv Mater. 2012;24(37):5104–5110. doi:10.1002/adma.20120065022718562
  • Eruslanov E, Kusmartsev S. Identification of ROS using oxidized DCFDA and flow-cytometry. Methods Mol Biol. 2010;594:57–72. doi:10.1007/978-1-60761-411-1_420072909
  • Yang Z, Li H, Zeng Y, et al. Photosensitizer-loaded branched polyethylenimine-PEGylated ceria nanoparticles for imaging-guided synchronous photo-chemotherapy. ACS Appl Mater Interfaces. 2015;7(43):24218–24228. doi:10.1021/acsami.5b0770226485120
  • Zhang D, Wu M, Zeng Y, et al. Chlorin e6 conjugated poly(dopamine) nanospheres as PDT/PTT dual-modal therapeutic agents for enhanced cancer therapy. ACS Appl Mater Interfaces. 2015;7(15):8176–8187. doi:10.1021/acsami.5b0102725837008
  • Hu D, Sheng Z, Gao G, et al. Activatable albumin-photosensitizer nanoassemblies for triple-modal imaging and thermal-modulated photodynamic therapy of cancer. Biomaterials. 2016;93:10–19. doi:10.1016/j.biomaterials.2016.03.03727061266
  • Guo Y, Zhao Y, Wang T, et al. Honokiol nanoparticles stabilized by oligoethylene glycols codendrimer: in vitro and in vivo investigations. J Mater Chem B. 2017;5(4):697–706. doi:10.1039/C6TB02416E
  • Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release. 2015;200:138–157. doi:10.1016/j.jconrel.2014.12.03025545217
  • Ezeja MI, Anaga AO, Asuzu IU. Acute and sub-chronic toxicity profile of methanol leaf extract of Gouania longipetala in rats. J Ethnopharmacol. 2014;151(3):1155–1164. doi:10.1016/j.jep.2013.12.03424384377