114
Views
8
CrossRef citations to date
0
Altmetric
Original Research

Fabrication Of Gold Nanoparticles In Absence Of Surfactant As In Vitro Carrier Of Plasmid DNA

ORCID Icon, , , , ORCID Icon & ORCID Icon
Pages 8399-8408 | Published online: 22 Oct 2019

References

  • Tseng S-J, Liao Z-X, Kao S-H, et al. Highly specific in vivo gene delivery for p53-mediated apoptosis and genetic photodynamic therapies of tumour. Nat Commun. 2015;6:6456. doi:10.1038/ncomms745625739372
  • Prabha S, Sharma B, Labhasetwar V. Inhibition of tumor angiogenesis and growth by nanoparticle-mediated p53 gene therapy in mice. Cancer Gene Ther. 2012;19(8):530. doi:10.1038/cgt.2012.2622595792
  • Senzer N, Nemunaitis J, Nemunaitis D, et al. Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors. Mol Ther. 2013;21(5):1096–1103. doi:10.1038/mt.2013.3223609015
  • Khoo KH, Verma CS, Lane DP. Drugging the p53 pathway: understanding the route to clinical efficacy. Nat Rev Drug Discov. 2014;13(3):217. doi:10.1038/nrd423624577402
  • Lane D, Levine A. p53 research: the past thirty years and the next thirty years. Cold Spring Harb Perspect Biol. 2010;2(12):a000893. doi:10.1101/cshperspect.a00089320463001
  • Levav-Cohen Y, Goldberg Z, Tan KH, et al. The P53-MDM2 Loop: A Critical Juncture of Stress Response. Mutant P53 and MDM2 in Cancer. Springer; 2014:161–186.
  • Duffy MJ, Synnott NC, Crown J. p53 in cancer: ready for therapeutic targeting? Transl Cancer Res. 2016;5(6):627–631. doi:10.21037/tcr
  • Vaseva AV, Moll UM. The mitochondrial p53 pathway. Biochim Biophys Acta Bioenerg. 2009;1787(5):414–420. doi:10.1016/j.bbabio.2008.10.005
  • Muller PA, Vousden KH. p53 mutations in cancer. Nat Cell Biol. 2013;15(1):2–8. doi:10.1038/ncb264123263379
  • Bieging KT, Mello SS, Attardi LD. Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer. 2014;14(5):359–370. doi:10.1038/nrc371124739573
  • Kruiswijk F, Labuschagne CF, Vousden KH. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat Rev Mol Cell Biol. 2015;16(7):393–405. doi:10.1038/nrm400726122615
  • Kim -S-S, Rait A, Kim E, et al. A nanoparticle carrying the p53 gene targets tumors including cancer stem cells, sensitizes glioblastoma to chemotherapy and improves survival. ACS Nano. 2014;8(6):5494–5514. doi:10.1021/nn501448424811110
  • Dong M, Chen J, Zhang J, et al. a chemoenzymatically synthesized cholesterol-g-poly (amine-co-ester)-mediated p53 gene delivery for achieving antitumor efficacy in prostate cancer. Int J Nanomedicine. 2019;14:1149–1161. doi:10.2147/IJN.S19190530863051
  • Tripathi R, Shrivastav A, Shrivastav B. Biogenic gold nanoparticles: as a potential candidate for brain tumor directed drug delivery. Artif Cells Nanomed Biotechnol. 2015;43(5):311–317. doi:10.3109/21691401.2014.88544524588231
  • Li J, Liang H, Liu J, Wang Z. Poly (amidoamine)(PAMAM) dendrimer mediated delivery of drug and pDNA/siRNA for cancer therapy. Int J Pharm. 2018;546(1–2):215–225. doi:10.1016/j.ijpharm.2018.05.04529787895
  • Song J, Fang Z, Wang C, et al. Photolabile plasmonic vesicles assembled from amphiphilic gold nanoparticles for remote-controlled traceable drug delivery. Nanoscale. 2013;5(13):5816–5824. doi:10.1039/c3nr01350b23689945
  • Mallick K, Witcomb M. Gold nanoparticles as a delivery vehicle in biomedical applications. Gold Nanoparticles. 2010;225–243.
  • Kumar A, Zhang X, Liang X-J. Gold nanoparticles: emerging paradigm for targeted drug delivery system. Biotechnol Adv. 2013;31(5):593–606. doi:10.1016/j.biotechadv.2012.10.00223111203
  • Ghosh P, Han G, De M, Kim CK, Rotello VM. Gold nanoparticles in delivery applications. Adv Drug Deliv Rev. 2008;60(11):1307–1315. doi:10.1016/j.addr.2008.03.01618555555
  • Jazayeri MH, Amani H, Pourfatollah AA, Pazoki-Toroudi H, Sedighimoghaddam B. Various methods of gold nanoparticles (GNPs) conjugation to antibodies. Sens Biosensing Res. 2016;9:17–22. doi:10.1016/j.sbsr.2016.04.002
  • Guo J, Armstrong MJ, O’Driscoll CM, Holmes JD, Rahme K. Positively charged, surfactant-free gold nanoparticles for nucleic acid delivery. RSC Adv. 2015;5(23):17862–17871. doi:10.1039/C4RA16294C
  • Rahme K, Chen L, Hobbs RG, Morris MA, O’Driscoll C, Holmes JD. PEGylated gold nanoparticles: polymer quantification as a function of PEG lengths and nanoparticle dimensions. RSC Adv. 2013;3(17):6085–6094. doi:10.1039/C3RA22739A
  • Brown KR, Lyon LA, Fox AP, Reiss BD, Natan MJ. Hydroxylamine seeding of colloidal Au nanoparticles. 3. controlled formation of conductive Au films. Chem Mater. 2000;12(2):314–323. doi:10.1021/cm980066h
  • Abrica-González P, Zamora-Justo JA, Sotelo-López A, et al. Gold nanoparticles with chitosan, N-acylated chitosan, and chitosan oligosaccharide as DNA carriers. Nanoscale Res Lett. 2019;14(1):258. doi:10.1186/s11671-019-3083-y31363863
  • Loughery J, Cox M, Smith LM, Meek DW. Critical role for p53-serine 15 phosphorylation in stimulating transactivation at p53-responsive promoters. Nucleic Acids Res. 2014;42(12):7666–7680. doi:10.1093/nar/gku50124928858
  • Lotfipour F, Hallaj-Nezhadi S, Valizadeh H, et al. Preparation of chitosan-plasmid DNA nanoparticles encoding interleukin-12 and their expression in CT-26 colon carcinoma cells. J Pharm Pharm Sci. 2011;14(2):181–195. doi:10.18433/J3TP4T21733408
  • El-Leithy ES, Hassan SA, Abdel-Rashid RS. Tamoxifen citrate/coenzyme Q10 as smart nanocarriers bitherapy for breast cancer: cytotoxicity, genotoxicity, and antioxidant activity. J Drug Deliv Sci Technol. 2019;51:36–44. doi:10.1016/j.jddst.2019.02.010
  • Huang L, Yan H, Jiang X, et al. Reference gene selection for quantitative real-time reverse-transcriptase PCR in orchardgrass subjected to various abiotic stresses. Gene. 2014;553(2):158–165. doi:10.1016/j.gene.2014.10.01725307767
  • Chen KG, Valencia JC, Gillet JP, Hearing VJ, Gottesman MM. Involvement of ABC transporters in melanogenesis and the development of multidrug resistance of melanoma. Pigment Cell Melanoma Res. 2009;22(6):740–749. doi:10.1111/j.1755-148X.2009.00630.x19725928
  • Yasun E, Li C, Barut I, et al. BSA modification to reduce CTAB induced nonspecificity and cytotoxicity of aptamer-conjugated gold nanorods. Nanoscale. 2015;7(22):10240–10248. doi:10.1039/c5nr01704a25990591
  • Ngumbi PK, Mugo SW, Ngaruiya JM. Determination of gold nanoparticles sizes via surface plasmon resonance. IOSR J Appl Chem. 2018;11(7Ver. I):25–29.
  • Zuber A, Purdey M, Schartner E, et al. Detection of gold nanoparticles with different sizes using absorption and fluorescence based method. Sens Actuators B Chem. 2016;227:117–127. doi:10.1016/j.snb.2015.12.044
  • Ziegler C, Eychmüller A. Seeded growth synthesis of uniform gold nanoparticles with diameters of 15− 300 nm. J Phys Chem C. 2011;115(11):4502–4506. doi:10.1021/jp1106982
  • Martínez J, Chequer N, González J, Cordova T. Alternative methodology for gold nanoparticles diameter characterization using PCA technique and UV-VIS spectrophotometry. Nanosci Nanotechnol. 2012;2(6):184–189. doi:10.5923/j.nn.20120206.06
  • Jongjinakool S, Palasak K, Bousod N, Teepoo S. Gold nanoparticles-based colorimetric sensor for cysteine detection. Energy Procedia. 2014;56:10–18. doi:10.1016/j.egypro.2014.07.126
  • Piella J, Bastús NG, Puntes V. Size-controlled synthesis of sub-10-nanometer citrate-stabilized gold nanoparticles and related optical properties. Chem Mater. 2016;28(4):1066–1075. doi:10.1021/acs.chemmater.5b04406
  • Xia H, Bai S, Hartmann J, Wang D. Synthesis of monodisperse quasi-spherical gold nanoparticles in water via silver (I)-assisted citrate reduction. Langmuir. 2009;26(5):3585–3589. doi:10.1021/la902987w
  • Huang Y-J, Shiau A-L, Chen S-Y, et al. Multivalent structure of galectin-1-nanogold complex serves as potential therapeutics for rheumatoid arthritis by enhancing receptor clustering. Eur Cell Mater. 2012;23:170–181.22415803
  • Oh E, Delehanty JB, Sapsford KE, et al. Cellular uptake and fate of PEGylated gold nanoparticles is dependent on both cell-penetration peptides and particle size. ACS Nano. 2011;5(8):6434–6448. doi:10.1021/nn201624c21774456
  • Shan Y, Ma S, Nie L, et al. Size-dependent endocytosis of single gold nanoparticles. Chem Commun. 2011;47(28):8091–8093. doi:10.1039/c1cc11453k
  • Elbakry A, Wurster EC, Zaky A, et al. Layer‐by‐layer coated gold nanoparticles: size‐dependent delivery of DNA into cells. Small. 2012;8(24):3847–3856. doi:10.1002/smll.20120111222911477
  • Liu X, Huang N, Li H, Jin Q, Ji J. Surface and size effects on cell interaction of gold nanoparticles with both phagocytic and nonphagocytic cells. Langmuir. 2013;29(29):9138–9148. doi:10.1021/la401556k23815604
  • Ahmad I, Derkink F, Boulogne T, et al. Self-assembly and wetting properties of gold nanorod–CTAB molecules on HOPG. Beilstein J Nanotechnol. 2019;10(1):696–705. doi:10.3762/bjnano.10.6930931211
  • Martínez-Negro M, Guerrero-Martínez A, García-Río L, et al. Multidisciplinary approach to the transfection of plasmid DNA by a nonviral nanocarrier based on a gemini–bolaamphiphilic hybrid lipid. ACS Omega. 2018;3(1):208–217. doi:10.1021/acsomega.7b0165730023772
  • Hashem FM, Nasr M, Khairy A, Alqurshi A. In vitro cytotoxicity and transfection efficiency of pDNA encoded p53 gene-loaded chitosan-sodium deoxycholate nanoparticles. Int J Nanomedicine. 2019;14:4123–4131. doi:10.2147/IJN.S20532431239671
  • Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev. 2012;64:206–212. doi:10.1016/j.addr.2012.09.033
  • Schaeublin NM, Braydich-Stolle LK, Schrand AM, et al. Surface charge of gold nanoparticles mediates mechanism of toxicity. Nanoscale. 2011;3(2):410–420. doi:10.1039/c0nr00478b21229159
  • Zhao F, Zhao Y, Liu Y, Chang X, Chen C, Zhao Y. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small. 2011;7(10):1322–1337. doi:10.1002/smll.20110000121520409
  • Harush-Frenkel O, Rozentur E, Benita S, Altschuler Y. Surface charge of nanoparticles determines their endocytic and transcytotic pathway in polarized MDCK cells. Biomacromolecules. 2008;9(2):435–443. doi:10.1021/bm700535p18189360
  • Zhang LW, Monteiro-Riviere NA. Mechanisms of quantum dot nanoparticle cellular uptake. Toxicol Sci. 2009;110(1):138–155. doi:10.1093/toxsci/kfp08719414515
  • Salatin S, Yari Khosroushahi A. Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. J Cell Mol Med. 2017;21(9):1668–1686. doi:10.1111/jcmm.1311028244656
  • Cheng L-C, Jiang X, Wang J, Chen C, Liu R-S. Nano–bio effects: interaction of nanomaterials with cells. Nanoscale. 2013;5(9):3547–3569. doi:10.1039/c3nr34276j23532468
  • Hauck TS, Ghazani AA, Chan WC. Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small. 2008;4(1):153–159. doi:10.1002/smll.20070021718081130
  • Lin J, Zhang H, Chen Z, Zheng Y. Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship. ACS Nano. 2010;4(9):5421–5429. doi:10.1021/nn101079220799717
  • Verma A, Stellacci F. Effect of surface properties on nanoparticle–cell interactions. Small. 2010;6(1):12–21. doi:10.1002/smll.20090115819844908