490
Views
21
CrossRef citations to date
0
Altmetric
Original Research

Antibacterial Activity of Fusidic Acid and Sodium Fusidate Nanoparticles Incorporated in Pine Oil Nanoemulgel

ORCID Icon, , &
Pages 9411-9421 | Published online: 02 Dec 2019

References

  • DeLouise LA. Applications of nanotechnology in dermatology. J Invest Dermatol. 2012;132(3):964–975. doi:10.1038/jid.2011.42522217738
  • Hirose A, Nishimura T, Kanno J. Research strategy for evaluation methods of the manufactured nanomaterials in NIHS and importance of the chronic health effects studies. Bull Nati Inst Health Sci. 2009;127:15–25.
  • Saini R, Saini S, Sharma S. Nanotechnology: the future medicine. J Cutan Aesthet Surg. 2010;3(1):32–33. doi:10.4103/0974-2077.6330120606992
  • Chellapa P, Eid AM, Elmarzugi NA. Preparation and characterization of virgin coconut oil nanoemulgel. J Chem Pharm Res. 2015;7(9):787–793.
  • Sutradhar KB, Amin ML. Nanoemulsions: increasing possibilities in drug delivery. Eur J Nanomed. 2013;5(2):97–110. doi:10.1515/ejnm-2013-0001
  • Baibhav J, Gurpreet S, Rana A, et al. Development and characterization of clarithromycin emulgel for topical delivery. Int J Drug Dev Res. 2012;4(3):310–323.
  • Vikas S, Seema S, Gurpreet S, et al. Penetration enhancers: a novel strategy for enhancing transdermal drug delivery. Int Res J Pharm. 2011;2:32–36.
  • Desai P, Mhaskar GM. Formulation and evaluation of Zingiber officinale Emulgel. Int J Pharm Sci Drug Res. 2019;12(3):1294–1300.
  • Singla V, Saini S, Joshi B, et al. Emulgel: a new platform for topical drug delivery. Int J Pharma Bio Sci. 2012;3(1):485–498.
  • Michael CA, Dominey-Howes D, Labbate M. The antimicrobial resistance crisis: causes, consequences, and management. Public Health Front. 2014;2:145. doi:10.3389/fpubh.2014.00145
  • Aruguete DM, Kim B, Hochella MF, et al. Antimicrobial nanotechnology: its potential for the effective management of microbial drug resistance and implications for research needs in microbial nanotoxicology. Environ Sci Proc Imp. 2013;15(1):93–102.
  • Baptista PV, McCusker MP, Carvalho A, et al. Nano-strategies to fight multidrug resistant bacteria—“A battle of the titans”. Front Microbiol. 2018;9:1441. doi:10.3389/fmicb.2018.0144130013539
  • Godtfredsen W, Jahnsen S, Lorck H, et al. Fusidic acid: a new antibiotic. Nature. 1962;193:987. doi:10.1038/193987a013899435
  • Turnidge J. Fusidic acid pharmacology, pharmacokinetics and pharmacodynamics. Int J Antimicrob Agents. 1999;12:S23–S34. doi:10.1016/S0924-8579(98)00071-510528784
  • Fuller FW. The side effects of silver sulfadiazine. J Burn Care Res. 2009;30(3):464–470. doi:10.1097/BCR.0b013e3181a28c9b19349889
  • Lipsky BA, Hoey C. Topical antimicrobial therapy for treating chronic wounds. Clin Infect Dis. 2009;49(10):1541–1549. doi:10.1086/59919319842981
  • Fisher A. Lasers and allergic contact dermatitis to topical antibiotics, with particular reference to bacitracin. Cutis. 1996;58(4):252–254.8894422
  • Levy SB, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med. 2004;10(12):122–129. doi:10.1038/nm1145
  • Katare OP, Raza K, Singh B, et al. Novel drug delivery systems in topical treatment of psoriasis: rigors and vigors. Indian J Dermatol Ve. 2010;76(6):612–621. doi:10.4103/0378-6323.72451
  • Vanangamudi SS, Srinivasan M, Chulliel NN, et al. Novel Dermaceutical Cream Made Using Sodium Fusidate. Google Patents. 2011.
  • Fernandes P. Fusidic acid: a bacterial elongation factor inhibitor for the oral treatment of acute and chronic staphylococcal infections. Cold Spring Harb Perspect Med. 2016;6(1):a025437. doi:10.1101/cshperspect.a02543726729758
  • Ball A, Gray J, Murdoch JM. Fusidic Acid (Sodium Fusidate) In: Antibacterial Drugs Today. Dordrecht: Springer; 1978:46–48.
  • Sakeena M, Muthanna F, Ghassan Z, et al. Effect of limonene on permeation enhancement of ketoprofen in palm oil esters nanoemulsion. J Oleo Sci. 2010;59(7):395–400. doi:10.5650/jos.59.39520513974
  • Shah PP, Desai PR, Singh M. Effect of oleic acid modified polymeric bilayered nanoparticles on percutaneous delivery of spantide II and ketoprofen. J Control Release. 2012;158(2):336–345. doi:10.1016/j.jconrel.2011.11.01622134117
  • Moribe K, Shibata M, Furuishi T, et al. Effect of particle size on skin permeation and retention of piroxicam in aqueous suspension. Chem Pharm Bull. 2010;58(8):1096–1099. doi:10.1248/cpb.58.109620686267
  • Maestrelli F, González-Rodríguez ML, Rabasco AM, et al. Preparation and characterisation of liposomes encapsulating ketoprofen–cyclodextrin complexes for transdermal drug delivery. Int J Pharm. 2005;298(1):55–67. doi:10.1016/j.ijpharm.2005.03.03315941634
  • Bansod SD, Bawaskar MS, Gade AK, et al. Development of shampoo, soap and ointment formulated by green synthesised silver nanoparticles functionalised with antimicrobial plants oils in veterinary dermatology: treatment and prevention strategies. IET Nanobiotechnol. 2015;9(4):165–171. doi:10.1049/iet-nbt.2014.004226224344
  • Gürol Z, Hekimoǧlu S, Demirdamar R, et al. Percutaneous absorption of ketoprofen. I. In vitro release and percutaneous absorption of ketoprofen from different ointment bases. Pharm Acta Helv. 1996;71(3):205–212. doi:10.1016/0031-6865(96)00011-88818309
  • Beetge E, du Plessis J, Müller DG, et al. The influence of the physicochemical characteristics and pharmacokinetic properties of selected NSAID’s on their transdermal absorption. Int J Pharm. 2000;193(2):261–264. doi:10.1016/S0378-5173(99)00340-310606790
  • Goosen C, Du Plessis J, Müller D, et al. Correlation between physicochemical characteristics, pharmacokinetic properties and transdermal absorption of NSAID’s. Int J Pharm. 1998;163(1–2):203–209. doi:10.1016/S0378-5173(97)00359-1
  • Nagai N, Ito Y. Therapeutic effects of gel ointments containing tranilast nanoparticles on paw edema in adjuvant-induced arthritis rats. Biol Pharm Bull. 2014;37(1):96–104. doi:10.1248/bpb.b13-0063024389486
  • Nagai N, Yoshioka C, Ito Y. Topical therapies for rheumatoid arthritis by gel ointments containing indomethacin nanoparticles in adjuvant-induced arthritis rat. J Oleo Sci. 2015;64(3):337–346. doi:10.5650/jos.ess1417025757439
  • Labouta HI, Schneider M. Interaction of inorganic nanoparticles with the skin barrier: current status and critical review. Nanomed Nanotechnol Bio Med. 2013;9(1):39–54. doi:10.1016/j.nano.2012.04.004
  • Khurana S, Jain N, Bedi P. Nanoemulsion based gel for transdermal delivery of meloxicam: physico-chemical, mechanistic investigation. Life Sci. 2013;92(6–7):383–392. doi:10.1016/j.lfs.2013.01.00523353874
  • Humberstone AJ, Charman WN. Lipid-based vehicles for the oral delivery of poorly water soluble drugs. Adv Drug Deliv Rev. 1997;25(1):103–128. doi:10.1016/S0169-409X(96)00494-2
  • Balakrishnan P, Lee B-J, Oh DH, et al. Enhanced oral bioavailability of dexibuprofen by a novel solid self-emulsifying drug delivery system (SEDDS). Eur J Pharm Biopharm. 2009;72(3):539–545. doi:10.1016/j.ejpb.2009.03.00119298857
  • Vanhanen LP, Savage GP, Hider R. Fatty acid profile of New Zealand grown edible pine nuts (Pinus spp.). Food Nutr Sci. 2017;8:305–315.
  • Azeem A, Rizwan M, Ahmad FJ, et al. Nanoemulsion components screening and selection: a technical note. AAPS PharmSciTech. 2009;10(1):69–76. doi:10.1208/s12249-008-9178-x19148761
  • Sharma S, Sharma A, Naseer M, et al. Formulation and evaluation of self emulsifying drug delivery system of ibuprofen using castor oil. Int J Pharm Pharm Sci. 2011;3:299–302.
  • Mayer S, Weiss J, McClements DJ. Vitamin E-enriched nanoemulsions formed by emulsion phase inversion: factors influencing droplet size and stability. J Colloid Interface Sc. 2013;402:122–130. doi:10.1016/j.jcis.2013.04.01623660020
  • Nepal PR, Han H-K, Choi H-K. Preparation and in vitro–in vivo evaluation of Witepsol® H35 based self-nanoemulsifying drug delivery systems (SNEDDS) of coenzyme Q10. Eur J Pharm Sci. 2010;39(4):224–232. doi:10.1016/j.ejps.2009.12.00420035865
  • Arriaga LR, Drenckhan W, Salonen A, et al. On the long-term stability of foams stabilised by mixtures of nano-particles and oppositely charged short chain surfactants. Soft Matter. 2012;8(43):11085–11097. doi:10.1039/c2sm26461g
  • Salim N, Basri M, Rahman MA, et al. Phase behaviour, formation and characterization of palm-based esters nanoemulsion formulation containing ibuprofen. J Nanomedic Nanotechnol. 2011;2(4):1–5. doi:10.4172/2157-7439.1000113
  • Boddupalli BM, Mohammed ZN, Nath RA, et al. Mucoadhesive drug delivery system: an overview. J Adv Pharm Tech Res. 2010;1(4):381–387. doi:10.4103/0110-5558.76436
  • Saritha D, Bose P, Nagaraju R. Formulation and evaluation of self emulsifying drug delivery system (SEDDS) of Ibuprofen. Int J Pharm Sci Res. 2014;5:3511–3519.
  • Sahu SSK, Kumar A. Influence of carbopol and polyox on the release of metoprolol succinate from extended-release matrix tablets: a doe approach and in-vivo evaluation. World J Pharm Pharm Sci. 2018;7(4):1228–1239.
  • Zhang L, Pornpattananangkul D, Hu C-M, et al. Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem. 2010;17(6):585–594. doi:10.2174/09298671079041629020015030
  • Marslin G, Selvakesavan RK, Franklin G, et al. Antimicrobial activity of cream incorporated with silver nanoparticles biosynthesized from Withania somnifera. Int J Nanomedicine. 2015;10:5955–5963. doi:10.2147/IJN.S8127126445537
  • Assali M, Zaid AN, Abdallah F, et al. Single-walled carbon nanotubes-ciprofloxacin nanoantibiotic: strategy to improve ciprofloxacin antibacterial activity. Int J Nanomedicine. 2017;12:6647–6659. doi:10.2147/IJN28924348
  • Edris AE. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytother Res. 2007;21(4):308–323. doi:10.1002/(ISSN)1099-157317199238
  • Deba F, Xuan TD, Yasuda M, et al. Chemical composition and antioxidant, antibacterial and antifungal activities of the essential oils from Bidens pilosa Linn. var. Radiata. Food Control. 2008;19(4):346–352. doi:10.1016/j.foodcont.2007.04.011