256
Views
2
CrossRef citations to date
0
Altmetric
Original Research

Glyconanoparticles with Activatable Near-Infrared Probes for Tumor-Cell Imaging and Targeted Drug Delivery

, , , , &
Pages 1567-1575 | Published online: 02 Apr 2022

References

  • Shen Y, Friend CS, Jiang Y, et al. Nanophotonics: interactions, materials, and applications. J Phys Chem B. 2000;104(32):4–5. doi:10.1021/jp0031395
  • Cui H, Hu D, Zhang J, et al. Gold nanoclusters-indocyanine green nanoprobes for synchronous cancer imaging, treatment, and real-time monitoring based on fluorescence resonance energy transfer. ACS Appl Mater Inter. 2017;9(30):25114–25127. doi:10.1021/acsami.7b06192
  • Poplinger D, Bokan M, Hesin A, et al. Ratiometric fluorescence monitoring of antibody-guided drug delivery to cancer cells. Bioconjugate Chem. 2021;32(8):1641–1651. doi:10.1021/acs.bioconjchem.1c00205
  • Chao S, Lv X, Ma N, et al. A supramolecular nanoprodrug based on a boronate ester linked curcumin complexing with water-soluble Pillar[5]arene for synergistic chemotherapies. Chem Commun. 2020;56(62):8861–8864. doi:10.1039/D0CC04315J
  • Sun G, Zuo M, Qian W, et al. Highly efficient artificial light-harvesting systems constructed in aqueous solution for supramolecular photocatalysis. Green Synth Catal. 2021;2(1):32–37. doi:10.1016/j.gresc.2021.01.003
  • Feng W, Jin M, Yang K, et al. Supramolecular delivery systems based on pillararenes. Chem Commun. 2018;54(97):13626–13640. doi:10.1039/C8CC08252A
  • Owens EA, Henary M, El Fakhri G, et al. Tissue-specific near-infrared fluorescence imaging. Accounts Chem Res. 2016;49(9):1731–1740. doi:10.1021/acs.accounts.6b00239
  • Zhao Y, Hai Z, Wang H, et al. Legumain-specific near-infrared fluorescence “Turn On” for tumor-targeted imaging. Anal Chem. 2018;90(15):8732–8735. doi:10.1021/acs.analchem.8b02704
  • Ji Y, Jones C, Baek Y, et al. Near-infrared fluorescence imaging in immunotherapy. Adv Drug Deliver Rev. 2020;167:121–134. doi:10.1016/j.addr.2020.06.012
  • Zhu H, Li Q, Shi B, et al. Dual-emissive platinum(II)metallacage with a sensitive oxygen response for imaging of hypoxia and imaging-guided chemotherapy. Angew Chem Int Ed. 2020;132(45):20383–20389. doi:10.1002/ange.202009442
  • Song N, Zhang Z, Liu P, et al. Pillar[5]arene-modified gold nanorods as nanocarriers for multi-modal imaging-guided synergistic photodynamic-photothermal therapy. Adv Funct Mater. 2021;31(21):2009924. doi:10.1002/adfm.202009924
  • Zhou W, Chen Y, Yu Q, et al. Ultralong purely organic aqueous phosphorescence supramolecular polymer for targeted tumor cell imaging. Nat Commun. 2020;11(1):1–10. doi:10.1038/s41467-020-18520-7
  • Liu Z, Wang B, Ma Z, et al. Fluorogenic probe for the human ether-a-go-go-related gene potassium channel imaging. Anal Chem. 2015;87(5):2550–2554. doi:10.1021/ac504763b
  • Mu J, Liu F, Rajab MS, et al. A small-molecule FRET reporter for the real-time visualization of cell-surface proteolytic enzyme functions. Angew Chem Int Ed. 2014;53(52):14357–14362. doi:10.1002/anie.201407182
  • Xing Y, Zhao J, Conti PS, et al. Radiolabeled nanoparticles for multimodality tumor imaging. Theranostics. 2014;4(3):290–306. doi:10.7150/thno.7341
  • Wang Y, Jiang Y, Zhang M, et al. Protease-activatable hybrid nanoprobe for tumor imaging. Adv Funct Mater. 2001;24(34):5443–5453. doi:10.1002/adfm.201400419
  • Shang L, Bian T, Zhang B, et al. Inside cover: graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica: robust catalysts for oxidation and reduction reactions. Angew Chem Int Ed. 2014;53(1):2. doi:10.1002/anie.201310508
  • Cao S, Pei Z, Xu Y, et al. Glyco-nanovesicles with activatable near-infrared probes for real-time monitoring of drug release and targeted delivery. Chem Mater. 2016;28(12):4501–4506. doi:10.1021/acs.chemmater.6b01857
  • Guo Z, Zhu W, Tian H. Dicyanomethylene-4H-pyran chromophores for OLED emitters, logic gates and optical chemosensors. Chem Commun. 2012;48(49):6073–6084. doi:10.1039/c2cc31581e
  • Wu R, Wang H, Hai L, et al. A photosensitizer-loaded zinc oxide-polydopamine core-shell nanotherapeutic agent for photodynamic and photothermal synergistic therapy of cancer cells. Chin Chem Lett. 2020;31(1):189–192. doi:10.1016/j.cclet.2019.05.004
  • Feng J, Yu W, Xu Z, et al. An intelligent ZIF-8-gated polydopamine nanoplatform for in vivo cooperatively enhanced combination phototherapy. Chem Sci. 2020;11(6):1649–1656. doi:10.1039/C9SC06337D
  • Zhang Y, Wu X, Hou C, et al. Dual-responsive dithio-polydopamine coated porous CeO2 nanorods for targeted and synergistic drug delivery. Int J Nanomed. 2018;13:2161–2173. doi:10.2147/IJN.S152002
  • Liu Y, Ai K, Lu L. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev. 2014;114(9):5057–5115. doi:10.1021/cr400407a
  • Li Y, Dai H, Zhang Q, et al. In situ generation of electron acceptor to amplify the photoelectrochemical signal from poly (dopamine)-sensitized TiO2 signal crystal for immunoassay. J Mater Chem B. 2016;4(15):2591–2597. doi:10.1039/C5TB02525G
  • Ball V, Del Frari D, Toniazzo V, et al. Kinetics of polydopamine film deposition as a function of pH and dopamine concentration: insights in the polydopamine deposition mechanism. J Colloid Interf Sci. 2012;386(1):366–372. doi:10.1016/j.jcis.2012.07.030
  • Chen X, Huang Y, Yang G, et al. Polydopamine integrated nanomaterials and their biomedical applications. Curr Pharm Design. 2015;21(29):4262–4275. doi:10.2174/1381612821666150901103418
  • Kwon IS, Bettinger CJ. Polydopamine nanostructures as biomaterials for medical applications. J Mater Chem B. 2018;6(43):6895–6903. doi:10.1039/C8TB02310G
  • Chang Y, Yang K, Wei P, et al. Cationic vesicles based on amphiphilic pillar[5]arene capped with ferrocenium: a redox-responsive system for drug/siRNA co-delivery. Angew Chem Int Ed. 2014;53(48):13126–13130. doi:10.1002/anie.201407272
  • Lu Y, Hou C, Ren J, et al. A multifunctional supramolecular vesicle based on complex of cystamine dihydrochloride capped pillar[5]arene and galactose derivative for targeted drug delivery. Int J Nanomed. 2019;14:3525–3532. doi:10.2147/IJN.S191256
  • Liu S, Huang Y, Chen X, et al. Lactose mediated liver-targeting effect observed by ex vivo imaging technology. Biomaterials. 2010;31(9):2646–2654. doi:10.1016/j.biomaterials.2009.12.019
  • Chao S, Shen Z, Pei Y, et al. Pillar[5]arene-based supramolecular photosensitizer for enhanced hypoxic-tumor therapeutic effectiveness. Chem Commun. 2021;57(62):7625–7628. doi:10.1039/D1CC02959B
  • Hou C, Ma N, Shen Z, et al. A GSH-responsive nanoprodrug system based on self-assembly of lactose modified camptothecin for targeted drug delivery and combination chemotherapy. Int J Nanomed. 2020;15:10417–10424. doi:10.2147/IJN.S276470
  • Yang R, Meng F, Ma S, et al. Galactose-decorated cross-linked biodegradable poly (ethylene glycol)-b-poly (ε-caprolactone) block copolymer micelles for enhanced hepatoma-targeting delivery of paclitaxel. Biomacromolecules. 2011;12(8):3047–3055. doi:10.1021/bm2006856
  • Ding Y, Wei J, Li S, et al. Host–guest interactions initiated supramolecular chitosan nanogels for selective intracellular drug delivery. ACS Appl Mater Inter. 2019;11(32):28665–28670. doi:10.1021/acsami.9b09059
  • Xie J, Lu Y, Yu B, et al. Galactose-modified enzymatic synthesis of poly (amino-co-ester) micelles for co-delivery miR122 and sorafenib to inhibit hepatocellular carcinoma development. Chin Chem Lett. 2020;31(5):1173–1177. doi:10.1016/j.cclet.2019.10.030
  • Yang K, Pei Y, Wen J, et al. Recent advances in pillar[n]arenes: synthesis and applications based on host-guest interactions. Chem Commun. 2016;52(60):9316–9326. doi:10.1039/C6CC03641D