214
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Fluorophore Localization Determines the Results of Biodistribution of Core-Shell Nanocarriers

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 577-588 | Published online: 08 Feb 2022

References

  • Maeda H, Bharate GY, Daruwalla J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm. 2009;71(3):409–419. doi:10.1016/j.ejpb.2008.11.010
  • Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–951. doi:10.1038/nbt.3330
  • Prabhakar U, Maeda H, Jain K, et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 2013;73(8):2412–2417. doi:10.1158/0008-5472.CAN-12-4561
  • Rafiei P, Haddadi A. Docetaxel-loaded PLGA and PLGA-PEG nanoparticles for intravenous application: pharmacokinetics and biodistribution profile. Int J Nanomedicine. 2017;12:935–947. doi:10.2147/IJN.S121881
  • Seo HJ, Nam SH, Im H-J, et al. Rapid hepatobiliary excretion of micelle-encapsulated/radiolabeled upconverting nanoparticles as an integrated form. Sci Rep. 2015;5(1):15685. doi:10.1038/srep15685
  • Janssen BJA, De Celle T, Debets JJM, Brouns AE, Callahan MF, Smith TL. Effects of anesthetics on systemic hemodynamics in mice. Am J Physiol Heart Circ Physiol. 2004;287(4):1618–1624. doi:10.1152/ajpheart.01192.2003
  • Lv R, Yang P, Chen G, Gai S, Xu J, Prasad PN. Dopamine-mediated photothermal theranostics combined with up-conversion platform under near infrared light. Sci Rep. 2017;7(1):1–13. doi:10.1038/s41598-017-13284-5
  • Karabasz A, Bzowska M, Szczepanowicz K. Biomedical applications of multifunctional polymeric nanocarriers: a review of current literature. Int J Nanomedicine. 2020;15:8673–8696. doi:10.2147/IJN.S231477
  • Hirsjärvi S, Sancey L, Dufort S, et al. Effect of particle size on the biodistribution of lipid nanocapsules: comparison between nuclear and fluorescence imaging and counting. Int J Pharm. 2013;453:594–600. doi:10.1016/j.ijpharm.2013.05.057
  • Liu Y, Tseng Y, Huang L. Biodistribution studies of nanoparticles using fluorescence. Pharm Res. 2013;29(12):3273–3277. doi:10.1007/s11095-012-0818-1
  • Roy M, Wilson BC. An accurate homogenized tissue phantom for broad spectrum autofluorescence studies: a tool for optimizing quantum dot-based contrast agents. In: Nordstrom RJ, editor. Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurements of Tissue. Vol. 6870. SPIE; 2008:68700E. doi:10.1117/12.764639
  • Whittington NC, Wray S. Suppression of red blood cell autofluorescence for immunocytochemistry on fixed embryonic mouse tissue. Curr Protoc Neurosci. 2017;81(1):2.28.1–2.28.12. doi:10.1002/cpns.35
  • Karabasz A, Szczepanowicz K, Cierniak A, et al. In vivo studies on pharmacokinetics, toxicity and immunogenicity of polyelectrolyte nanocapsules functionalized with two different polymers: poly-L-glutamic acid or PEG. Int J Nanomedicine. 2019;14:9587–9602. doi:10.2147/IJN.S230865
  • Hermanson GT. Bioconjugate Techniques. Elsevier Academic Press; 2008.
  • Szczepanowicz K, Hoel HJ, Szyk-Warszynska L, et al. Formation of biocompatible nanocapsules with emulsion core and pegylated shell by polyelectrolyte multilayer adsorption. Langmuir. 2010;26(15):12592–12597. doi:10.1021/la102061s
  • Szczęch M, Szczepanowicz K. Polymeric core-shell nanoparticles prepared by spontaneous emulsification solvent evaporation and functionalized by the layer-by-layer method. Nanomaterials. 2020;10(3):496. doi:10.3390/nano10030496
  • Sukhorukov GB, Donath E, Lichtenfeld H, et al. Layer-by-layer self assembly of polyelectrolytes on colloidal particles. Colloids Surf a Physicochem Eng Asp. 1998;137(1–3):253–266. doi:10.1016/S0927-7757(98)00213-1
  • Berry R, Church CD, Gericke MT, Jeffery E, Colman L, Rodeheffer MS. Imaging of adipose tissue. In: Methods in Enzymology. Vol. 537. Academic Press Inc.;2014:47–73. doi:10.1016/B978-0-12-411619-1.00004-5
  • Szczepanowicz K, Bzowska M, Kruk T, Karabasz A, Bereta J, Warszynski P. Pegylated polyelectrolyte nanoparticles containing paclitaxel as a promising candidate for drug carriers for passive targeting. Colloids Surf B Biointerfaces. 2016;143:463–471. doi:10.1016/j.colsurfb.2016.03.064
  • Karabasz A, Szczepanowicz K, Cierniak A, Bereta J, Bzowska M. In vitro toxicity studies of biodegradable, polyelectrolyte nanocapsules. Int J Nanomedicine. 2018;13:5159–5172. doi:10.2147/IJN.S169120
  • Cordina NM, Sayyadi N, Parker LM, Everest-Dass A, Brown LJ, Packer NH. Reduced background autofluorescence for cell imaging using nanodiamonds and lanthanide chelates. Sci Rep. 2018;8(1):1–14. doi:10.1038/s41598-018-22702-1
  • Lukasiewicz S, Szczepanowicz KP, Blasiak E, Dziedzicka-Wasylewska M. Biocompatible polymeric nanoparticles as promising candidates for drug delivery. Langmuir. 2015;31(23):64156425. doi:10.1021/acs.langmuir.5b01226
  • Polomska A, Gauthier MA, Leroux J-C. In vitro and in vivo evaluation of PEGylated layer-by-layer polyelectrolyte-coated paclitaxel nanocrystals. Small. 2017;13(2):1602066. doi:10.1002/smll.201602066
  • Cardoso MJ, Caridade SG, Costa RR, Mano JF. Enzymatic degradation of polysaccharide-based layer-by-layer structures. Biomacromolecules. 2016;17(4):1347–1357. doi:10.1021/ACS.BIOMAC.5B01742
  • Johnston TP, Kuchimanchi KR, Alur H, Chittchang M, Mitra AK. Inducing a change in the pharmacokinetics and biodistribution of poly-l-lysine in rats by complexation with heparin. J Pharm Pharmacol. 2003;55(8):1083–1090. doi:10.1211/0022357021530
  • Mahadevan K, Patthipati VS, Han S, et al. Highly fluorescent resorcinarene cavitand nanocapsules with efficient renal clearance. Nanotechnology. 2016;27(33):335101. doi:10.1088/0957-4484/27/33/335101
  • Hirsjärvi S, Belloche C, Hindré F, Garcion E, Benoit JP. Tumour targeting of lipid nanocapsules grafted with cRGD peptides. Eur J Pharm Biopharm. 2014;87(1):152–159. doi:10.1016/j.ejpb.2013.12.006
  • Li L, Song L, Yang X, et al. Multifunctional “core-shell” nanoparticles-based gene delivery for treatment of aggressive melanoma. Biomaterials. 2016;111:124–137. doi:10.1016/j.biomaterials.2016.09.019
  • Cun X, Ruan S, Chen J, et al. A dual strategy to improve the penetration and treatment of breast cancer by combining shrinking nanoparticles with collagen depletion by losartan. Acta Biomater. 2016;31:186–196. doi:10.1016/j.actbio.2015.12.002
  • Sun X, Rossin R, Turner JL, et al. An assessment of the effects of shell cross-linked nanoparticle size, core composition, and surface PEGylation on in vivo biodistribution. Biomacromolecules. 2005;6(5):2541–2554. doi:10.1021/bm050260e
  • Guo P, Liu D, Subramanyam K, et al. Nanoparticle elasticity directs tumor uptake. Nat Commun. 2018;9(1):1–9. doi:10.1038/s41467-017-02588-9
  • Stolnik S, Dunn SE, Garnett MC, et al. Surface modification of poly(lactide-co-glycolide) nanospheres by biodegradable poly(lactide)-poly(ethylene glycol) copolymers. Pharm Res. 1994;11(12):1800–1808. doi:10.1023/A:1018931820564
  • Plassat V, Martina MS, Barratt G, Ménager C, Lesieur S. Sterically stabilized superparamagnetic liposomes for MR imaging and cancer therapy: pharmacokinetics and biodistribution. Int J Pharm. 2007;344(1–2):118–127. doi:10.1016/j.ijpharm.2007.05.018