238
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Highly Sensitive Lanthanide-Doped Nanoparticles-Based Point-of-Care Diagnosis of Human Cardiac Troponin I

, , , , , , , & show all
Pages 635-646 | Published online: 09 Feb 2022

References

  • Mullins KE, Christenson RH. Optimal detection of acute myocardial injury and infarction with cardiac troponin: beyond the 99th Percentile, into the high-sensitivity era. Curr Cardiol Rep. 2020;22(9):1–10. doi:10.1007/s11886-020-01350-w
  • Fathil MFM, Arshad MM, Gopinath SC, et al. Diagnostics on acute myocardial infarction: cardiac troponin biomarkers. Biosens Bioelectron. 2015;70:209–220. doi:10.1016/j.bios.2015.03.037
  • Han X, Li S, Peng Z, Othman AM, Leblanc RM. Recent development of cardiac troponin I detection. Physiol Plant. 2016;1(2):106–114. doi:10.1021/acssensors.5b00318
  • Huang H, Zhu S, Wang W, et al. Diagnosis of acute myocardial infarction in patients with renal insufficiency using high-sensitivity troponin T. Clin Chem Lab Med. 2015;53(5):723–730. doi:10.1515/cclm-2014-0715
  • Staden SV, Ilie RM, Pogacean F, Pruneanu SM. Needle stochastic sensors for on-site fast recognition and quantification of biomarkers for gastric cancer in biological samples. New J Chem. 2020;44(46):20203–20211. doi:10.1039/D0NJ03847D
  • Regan B, O’Kennedy R, Collins D. Point-of-care compatibility of ultra-sensitive detection techniques for the cardiac biomarker troponin I-challenges and potential value. Biosensors. 2018;8(4):114. doi:10.3390/bios8040114
  • Hassan SU, Tariq A, Noreen Z, Donia A, Zhang X. Capillary-driven flow microfluidics combined with smartphone detection: an emerging tool for point-of-care diagnostics. Diagnostics. 2020;10(8):509. doi:10.3390/diagnostics10080509
  • Wang C, Liu M, Wang Z, Li S, Deng Y, He N. Point-of-care diagnostics for infectious diseases: from methods to devices. Nano Today. 2021;37:101092. doi:10.1016/j.nantod.2021.101092
  • Yang J, Wang K, Xu H, Yan W, Jin Q, Cui D. Detection platforms for point-of-care testing based on colorimetric, luminescent and magnetic assays: a review. Talanta. 2019;202:96–110. doi:10.1016/j.talanta.2019.04.054
  • Jiang N, Ahmed R, Damayantharan M, Nal B, Yetisen AK. Lateral and vertical flow assays for point-of-care diagnostics. Adv Healthcare Mater. 2019;8(14):1900244. doi:10.1002/adhm.201900244
  • Guo J, Chen S, Tian S, Liu K, Ma X, Guo J. A sensitive and quantitative prognosis of C-reactive protein at picogram level using mesoporous silica encapsulated core-shell up-conversion nanoparticle based lateral flow strip assay. Talanta. 2021;230:122335. doi:10.1016/j.talanta.2021.122335
  • Bishop JD, Hsieh HV, Gasperino DJ, Weigl BH. Sensitivity enhancement in lateral flow assays: a systems perspective. Lab Chip. 2019;19(15):2486–2499. doi:10.1039/C9LC00104B
  • Natarajan S, Jayaraj J, Prazeres DMF. A cellulose paper-based fluorescent lateral flow immunoassay for the quantitative detection of cardiac troponin I. Biosensors. 2021;11(2):49. doi:10.3390/bios11020049
  • Li Z, Wang Y, Wang J, Tang Z, Pounds JG, Lin Y. Rapid and sensitive detection of protein biomarker using a portable fluorescence biosensor based on quantum dots and a lateral flow test strip. Anal Chem. 2010;82(16):7008–7014. doi:10.1021/ac101405a
  • Liu Q, Cheng S, Chen R, et al. Near-infrared lanthanide-doped nanoparticles for a low interference lateral flow immunoassay test. ACS Appl Mater Inter. 2020;12(4):4358–4365. doi:10.1021/acsami.9b22449
  • Wilhelm S. Perspectives for upconverting nanoparticles. ACS Nano. 2017;11(11):10644. doi:10.1021/acsnano.7b07120
  • Liu QY, Cheng SM, Chen R, et al. Hybrids of upconversion nanoparticles and silver nanoclusters ensure superior bactericidal capability via combined sterilization. ACS Appl Mater Inter. 2020;12(46):51285–51292. doi:10.1021/acsami.0c15710
  • Chen ZH, Zhang ZG, Zhai XM, et al. Rapid and sensitive detection of anti-SARS-CoV-2 IgG, using lanthanide-doped nanoparticles-based lateral flow immunoassay. Anal Chem. 2020;92(10):7226–7231. doi:10.1021/acs.analchem.0c00784
  • Zheng W, Tu D, Huang P, Zhou S, Chen Z, Chen X. Time-resolved luminescent biosensing based on inorganic lanthanide-doped nanoprobes. Chem Commun. 2015;51(20):4129–4143. doi:10.1039/C4CC10432C
  • da Rosa PPF, Kitagawa Y, Hasegawa Y. Luminescent lanthanide complex with seven-coordination geometry. Coordin Chem Rev. 2020;406:213153. doi:10.1016/j.ccr.2019.213153
  • Liu Y, Tu D, Zhu H, Chen X. Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications. Chem Soc Rev. 2014;42(16):6924–6958. doi:10.1039/C3CS60060B
  • Escudero A, Carrillo-Carrión C, Zyuzin MV, Parak WJ. Luminescent rare-earth-based nanoparticles: a summarized overview of their synthesis, functionalization, and applications. Top Curr Chem. 2016;374(4):1–15. doi:10.1007/s41061-016-0049-8
  • Mousseau F, Tarisse CF, Simon S, Gacoin T, Alexandrou A, Bouzigues CI. Luminescent lanthanide nanoparticle-based imaging enables ultra-sensitive, quantitative and multiplexed in vitro lateral flow immunoassays. Nanoscale. 2021;13(35):14814–14824. doi:10.1039/D1NR03358A
  • Abdesselem M, Schoeffel M, Maurin I, et al. Correction to multifunctional rare-earth vanadate nanoparticles: luminescent labels, oxidant sensors, and MRI contrast agents. ACS Nano. 2015;9(4):4660. doi:10.1021/acsnano.5b01924
  • Kang X, Yang D, Dai Y, et al. Poly (acrylic acid) modified lanthanide-doped GdVO4 hollow spheres for up-conversion cell imaging, MRI and pH-dependent drug release. Nanoscale. 2013;5(1):253–261. doi:10.1039/c2nr33130f
  • Chen C, Li C, Li T, et al. Water-soluble, monodisperse, lanthanide-doped Y(Gd)VO4 nanocrystals as promising multimodal bioprobe. Eur J Inorg Chem. 2015;2015(19):3108–3115. doi:10.1002/ejic.201500212
  • Song Y, Shao B, Feng Y, et al. Emission enhancement and color tuning for GdVO4: Ln3+ (Ln=Dy, Eu) by surface modification at single wavelength excitation. Inorg Chem. 2017;56(1):282–291. doi:10.1021/acs.inorgchem.6b02125
  • Kaowphong S, Chumha N, Nimmanpipug P, Kittiwachana S. Nanosized GdVO4 powders synthesized by sol-gel method using different carboxylic acids. Rare Met. 2018;37(7):561–567. doi:10.1007/s12598-015-0681-4
  • Jin D, Yang H, Ding G, Yu X, Wang L, Zheng Y. Hydrothermal synthesis and photoluminescence behavior of Eu-doped GdVO4. Inorg Mater. 2008;44(10):1121–1124. doi:10.1134/S002016850810018X
  • Li X, Yu M, Hou Z, et al. One-dimensional GdVO4:Ln3+ (Ln=Eu, Dy, Sm) nanofibers: electrospinning preparation and luminescence properties. J Solid State Chem. 2011;184(1):141–148. doi:10.1016/j.jssc.2010.11.019
  • Szczeszak A, Grzyb T, Śniadecki Z, et al. Structural, spectroscopic, and magnetic properties of Eu3+-doped GdVO4 nanocrystals synthesized by a hydrothermal method. Inorg Chem. 2014;53(23):12243–12252. doi:10.1021/ic500354t
  • Liu Y, Liu G, Dong X, Wang J, Yu W. Tunable photoluminescence and magnetic properties of Dy3+ and Eu3+ doped GdVO4 multifunctional phosphors. Phys Chem Chem Phys. 2015;17(40):26638–26644. doi:10.1039/c5cp04373e
  • Liu G, Hong G, Wang J, Dong X. Deposition of GdVO4:Eu3+ nanoparticles on silica nanospheres by a simple sol-gel method. Nanotechnology. 2006;17(13):3134. doi:10.1088/0957-4484/17/13/009
  • Xu Z, Feng B, Gao Y, et al. Uniform and well-dispersed GdVO4 hierarchical architectures: hydrothermal synthesis, morphology evolution, and luminescence properties. CrystEngComm. 2012;14(17):5530–5538. doi:10.1039/c2ce25521a
  • Gabrienko AA, Ewing AV, Chibiryaev AM, Agafontsev AM, Dubkov KA, Kazarian SG. New insights into the mechanism of interaction between CO2 and polymers from thermodynamic parameters obtained by in situ ATR-FTIR spectroscopy. Phys Chem Chem Phys. 2016;18(9):6465–6475. doi:10.1039/c5cp06431g
  • Yang L, Li L, Zhao M, Li G. Size-induced variations in bulk/surface structures and their impact on photoluminescence properties of GdVO4:Eu3+nanoparticles. Phys Chem Chem Phys. 2012;14(28):9956–9965. doi:10.1039/c2cp41136a
  • Han GR, Kim MG. Highly sensitive chemiluminescence-based lateral flow immunoassay for cardiac troponin I detection in human serum. Sensors. 2020;20(9):2593. doi:10.3390/s20092593
  • Zou J, Liu X, Ren X, et al. Rapid and simultaneous detection of heart-type fatty acid binding protein and cardiac troponin using a lateral flow assay based on metal organic framework@CdTe nanoparticles. Nanoscale. 2021;13(16):7844–7850. doi:10.1039/D1NR00702E
  • Natarajan S, Su F, Jayaraj J, Shah MII, Huang Y. A paper microfluidics-based fluorescent lateral flow immunoassay for point-of-care diagnostics of non-communicable diseases. Analyst. 2019;144(21):6291–6303. doi:10.1039/C9AN01382B
  • Han GR, Koo HJ, Ki H, Kim MG. Paper/soluble polymer hybrid-based lateral flow biosensing platform for high-performance point-of-care testing. ACS Appl Mater Inter. 2020;12(31):34564–34575. doi:10.1021/acsami.0c07893
  • Lou D, Fan L, Cui Y, Zhu Y, Gu N, Zhang Y. Fluorescent nanoprobes with oriented modified antibodies to improve lateral flow immunoassay of cardiac troponin I. Anal Chem. 2018;90(11):6502–6508. doi:10.1021/acs.analchem.7b05410
  • Lee KW, Kim KR, Chun HJ, et al. Time-resolved fluorescence resonance energy transfer-based lateral flow immunoassay using a raspberry-type europium particle and a single membrane for the detection of cardiac troponin I. Biosens Bioelectron. 2020;163:112284. doi:10.1016/j.bios.2020.112284
  • Liu X, Wang Y, Chen P, et al. Peptide functionalized gold nanoparticles with optimized particle size and concentration for colorimetric assay development: detection of cardiac troponin I. Acs Sensors. 2016;1(12):1416–1422. doi:10.1021/acssensors.6b00493
  • Raj V, Alex S. Non-enzymatic colorimetric sensor for cardiac Troponin I (cTnI) based on self-assembly of gold nanorods on heparin. Gold Bull. 2021;54(1):1–7. doi:10.1007/s13404-020-00287-w
  • Wu WY, Bian ZP, Wang W, Zhu JJ. PDMS gold nanoparticle composite film-based silver enhanced colorimetric detection of cardiac troponin I. Sens Actuators B Chem. 2010;147(1):298–303. doi:10.1016/j.snb.2010.03.027