911
Views
9
CrossRef citations to date
0
Altmetric
Review

Therapeutic Applications of Antimicrobial Silver-Based Biomaterials in Dentistry

, ORCID Icon, ORCID Icon, , , , ORCID Icon & show all
Pages 443-462 | Published online: 28 Jan 2022

References

  • Høiby N, Bjarnsholt T, Givskov M, et al. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010;35(4):322–332. doi:10.1016/j.ijantimicag.2009.12.011
  • Song W, Ge SA-O. Application of antimicrobial nanoparticles in dentistry. Molecules. 2019;24(6):1033. doi:10.3390/molecules24061033
  • Halkai KR, Mudda JA, Shivanna V, Rathod V, Halkai RS. Biosynthesis, characterization and antibacterial efficacy of silver nanoparticles derived from endophytic fungi against P. gingivalis. J Clin Diagn Res. 2017;11(9):Zc92–zc96.doi: 10.7860/JCDR/2017/29434.10681
  • Lara HH, Garza-Treviño EN, Ixtepan-Turrent L, et al. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnology. 2011;9(1):30. doi:10.1186/1477-3155-9-30
  • Kesharwani P, Gorain B, Low SY, et al. Nanotechnology based approaches for anti-diabetic drugs delivery. Diabetes Res Clin Pract. 2018;136:52–77. doi:10.1016/j.diabres.2017.11.018
  • Li X, Lenhart JJ, Walker HW. Aggregation kinetics and dissolution of coated silver nanoparticles. Langmuir. 2012;28(2):1095–1104. doi:10.1021/la202328n
  • Morozova OV, Volosneva ON, Levchenko OA, Barinov NA, Klinov DV. Protein corona on gold and silver nanoparticles. In: Materials Science Forum. Trans Tech Publ; 2018. doi:10.4028/www.scientific.net/MSF.936.42
  • Biswas A, Bayer IS, Biris AS, et al. Advances in top-down and bottom-up surface nanofabrication: techniques, applications & future prospects. Adv Colloid Interface Sci. 2012;170(1–2):2–27. doi:10.1016/j.cis.2011.11.001
  • García-Contreras R, Argueta-Figueroa L, Mejía-Rubalcava C, et al. Perspectives for the use of silver nanoparticles in dental practice. Int Dent J. 2011;61(6):297–301. doi:10.1111/j.1875-595X.2011.00072.x
  • Rai MK, Deshmukh SD, Ingle AP, et al. Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol. 2012;112(5):841–852. doi:10.1111/j.1365-2672.2012.05253.x
  • Verma S, Chevvuri R, Sharma H. Nanotechnology in dentistry: unleashing the hidden gems. J Indian Soc Periodontol. 2018;22(3):196–200. doi:10.4103/jisp.jisp_35_18
  • Zafar MS, Khurshid Z, Najeeb S, Zohaib S, Rehman IU. Therapeutic applications of nanotechnology in dentistry. Nanostructures for Oral Medicine. 2017:833–862.
  • Khurshid Z, Zafar M, Qasim S, et al. Advances in nanotechnology for restorative dentistry. Materials (Basel). 2015;8(2):717–731. doi:10.3390/ma8020717
  • Zafar MS, Alnazzawi AA, Alrahabi M, et al. 18 - Nanotechnology and nanomaterials in dentistry - ScienceDirect. . Advanced Dental Biomaterials. Woodhead Publishing; 2019:477–505.doi: 10.1016/B978-0-08-102476-8.00018-9
  • Kreve S, Oliveira VC, Bachmann L, et al. Influence of AgVO(3) incorporation on antimicrobial properties, hardness, roughness and adhesion of a soft denture liner. Sci Rep. 2019;9(1):11889. doi:10.1038/s41598-019-48228-8
  • Medici S, Peana M, Nurchi VM, et al. Medical uses of silver: history, myths, and scientific evidence. J Med Chem. 2019;62(13):5923–5943. doi:10.1021/acs.jmedchem.8b01439
  • Khan ST, Musarrat J, Al-Khedhairy AA. Countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: current status. Colloids Surf B Biointerfaces. 2016;146:70–83. doi:10.1016/j.colsurfb.2016.05.046
  • Shanmugasundaram T, Radhakrishnan M, Gopikrishnan V, Kadirvelu K, Balagurunathan R. In vitro antimicrobial and in vivo wound healing effect of actinobacterially synthesised nanoparticles of silver, gold and their alloy. RSC Adv. 2017;7(81):51729–51743. doi:10.1039/c7ra08483h
  • Lee YJ, Kim J, Oh J, et al. Ion-release kinetics and ecotoxicity effects of silver nanoparticles. Environ Toxicol Chem. 2012;31(1):155–159. doi:10.1002/etc.717
  • Yamanaka M, Hara K, Kudo J. Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol. 2005;71(11):7589–7593. doi:10.1128/AEM.71.11.7589-7593.2005
  • Gordon O, Vig Slenters T, Brunetto PS, et al. Silver coordination polymers for prevention of implant infection: thiol interaction, impact on respiratory chain enzymes, and hydroxyl radical induction. Antimicrob Agents Chemother. 2010;54(10):4208–4218. doi:10.1128/AAC.01830-09
  • Oves M, Aslam M, Rauf MA, et al. Antimicrobial and anticancer activities of silver nanoparticles synthesized from the root hair extract of Phoenix dactylifera. Mater Sci Eng C Mater Biol Appl. 2018;89:429–443. doi:10.1016/j.msec.2018.03.035
  • Samuel MS, Jose S, Selvarajan E, et al. Biosynthesized silver nanoparticles using Bacillus amyloliquefaciens; Application for cytotoxicity effect on A549 cell line and photocatalytic degradation of p-nitrophenol. J Photochem Photobiol B. 2020;202:111642. doi:10.1016/j.jphotobiol.2019.111642
  • Zhao X, Zhou L, Riaz Rajoka MS, et al. Fungal silver nanoparticles: synthesis, application and challenges. Crit Rev Biotechnol. 2018;38(6):817–835. doi:10.1080/07388551.2017.1414141
  • Durán N, Nakazato G, Seabra AB. Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: an overview and comments. Appl Microbiol Biotechnol. 2016;100(15):6555–6570. doi:10.1007/s00253-016-7657-7
  • Wang Y, Yang Y, Shi Y, et al. Antibiotic-free antibacterial strategies enabled by nanomaterials: progress and perspectives. Adv Mater. 2020;32(18):e1904106. doi:10.1002/adma.201904106
  • Park HJ, Kim JY, Kim J, et al. Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res. 2009;43(4):1027–1032. doi:10.1016/j.watres.2008.12.002
  • Shitomi K, Miyaji H, Miyata S, et al. Photodynamic inactivation of oral bacteria with silver nanoclusters/rose bengal nanocomposite. Photodiagnosis Photodyn Ther. 2020;30:101647. doi:10.1016/j.pdpdt.2019.101647
  • Morozova OV. Silver nanostructures: limited sensitivity of detection, toxicity and anti-inflammation effects. Int J Mol Sci. 2021;22(18):9928. doi:10.3390/ijms22189928
  • Ivanova EP, Hasan J, Webb HK, et al. Bactericidal activity of black silicon. Nat Commun. 2013;4(1):2838. doi:10.1038/ncomms3838
  • Lu X, Feng X, Werber JR, et al. Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets. Proc Natl Acad Sci U S A. 2017;114(46):E9793–e9801. doi:10.1073/pnas.1710996114
  • Lu X, Zhang B, Wang Y, et al. Nano-Ag-loaded hydroxyapatite coatings on titanium surfaces by electrochemical deposition. J R Soc Interface. 2011;8(57):529–539. doi:10.1098/rsif.2010.0366
  • Slawson RM, Van Dyke MI, Lee H, et al. Germanium and silver resistance, accumulation, and toxicity in microorganisms. Plasmid. 1992;27(1):72–79. doi:10.1016/0147-619X(92)90008-X
  • Silver S. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev. 2003;27(2–3):341–353. doi:10.1016/S0168-6445(03)00047-0
  • Panáček A, Kvítek L, Smékalová M, et al. Bacterial resistance to silver nanoparticles and how to overcome it. Nat Nanotechnol. 2018;13(1):65–71. doi:10.1038/s41565-017-0013-y
  • Mulley G, Jenkins AT, Waterfield NR, Marr AC. Inactivation of the antibacterial and cytotoxic properties of silver ions by biologically relevant compounds. PLoS One. 2014;9(4):e94409. doi:10.1371/journal.pone.0094409
  • Gupta A, Matsui K, Lo J-F, et al. Molecular basis for resistance to silver cations in Salmonella. Nat Med. 1999;5(2):183–188. doi:10.1038/5545
  • Vilarrasa J, Delgado LM, Galofré M, et al. In vitro evaluation of a multispecies oral biofilm over antibacterial coated titanium surfaces. J Mater Sci Mater Med. 2018;29(11):164. doi:10.1007/s10856-018-6168-8
  • Joshi AS, Singh P, Mijakovic I. Interactions of gold and silver nanoparticles with bacterial biofilms: molecular interactions behind inhibition and resistance. Int J Mol Sci. 2020;21(20):7658. doi:10.3390/ijms21207658
  • Agnihotri R, Gaur SA-O, Albin S. Nanometals in dentistry: applications and toxicological implications-a systematic review. Biol Trace Elem Res. 2020;197(1):70–88. doi:10.1007/s12011-019-01986-y
  • Cooper CF, Jolly WC. Ecological effects of silver iodide and other weather modification agents: a review. Water Resour Res. 1970;6(1):88–98. doi:10.1029/WR006i001p00088
  • Liao C, Li Y, Tjong SC. Bactericidal and cytotoxic properties of silver nanoparticles. Int J Mol Sci. 2019;20(2):449. doi:10.3390/ijms20020449
  • Hadrup N, Sharma AK, Loeschner K. Toxicity of silver ions, metallic silver, and silver nanoparticle materials after in vivo dermal and mucosal surface exposure: a review. Regul Toxicol Pharmacol. 2018;98:257–267. doi:10.1016/j.yrtph.2018.08.007
  • Miyayama T, Arai Y, Suzuki N, et al. Mitochondrial electron transport is inhibited by disappearance of metallothionein in human bronchial epithelial cells following exposure to silver nitrate. Toxicology. 2013;305:20–29. doi:10.1016/j.tox.2013.01.004
  • Piao MJ, Kang KA, Lee IK, et al. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett. 2011;201(1):92–100. doi:10.1016/j.toxlet.2010.12.010
  • Teodoro JS, Simões AM, Duarte FV, et al. Assessment of the toxicity of silver nanoparticles in vitro: a mitochondrial perspective. Toxicol In Vitro. 2011;25(3):664–670. doi:10.1016/j.tiv.2011.01.004
  • Recordati C, De Maglie M, Cella C, et al. Repeated oral administration of low doses of silver in mice: tissue distribution and effects on central nervous system. Part Fibre Toxicol. 2021;18(1):23. doi:10.1186/s12989-021-00418-x
  • Browning JC, Levy ML. Argyria attributed to silvadene application in a patient with dystrophic epidermolysis bullosa. Dermatol Online J. 2008;14(4):9. doi:10.5070/D34W81J7SM
  • Van Landuyt K, Hellack B, Van Meerbeek B, et al. Nanoparticle release from dental composites. Acta Biomater. 2014;10(1):365–374. doi:10.1016/j.actbio.2013.09.044
  • Wang W, Li T, Luo X, et al. Cytotoxic effects of dental prosthesis grinding dust on RAW264.7 cells. Sci Rep. 2020;10(1):14364. doi:10.1038/s41598-020-71485-x
  • Hadrup N, Sharma AK, Loeschner K, et al. Pulmonary toxicity of silver vapours, nanoparticles and fine dusts: a review. Regul Toxicol Pharmacol. 2020;115:104690. doi:10.1016/j.yrtph.2020.104690
  • Iwasaki Y, Saito Y, Nakano Y, et al. Chromatographic and mass spectrometric analysis of glutathione in biological samples. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877(28):3309–3317. doi:10.1016/j.jchromb.2009.07.001
  • Nedeljkovic I, De Munck J, Vanloy A, et al. Secondary caries: prevalence, characteristics, and approach. Clin Oral Investig. 2020;24(2):683–691. doi:10.1007/s00784-019-02894-0
  • Eslamian L, Borzabadi-Farahani A, Karimi S, et al. Evaluation of the Shear bond strength and antibacterial activity of orthodontic adhesive containing silver nanoparticle, an in-vitro study. Nanomaterials (Basel). 2020;10(8):1466. doi:10.3390/nano10081466
  • Yin IX, Zhao IS, Mei ML, et al. Use of silver nanomaterials for caries prevention: a concise review. Int J Nanomedicine. 2020;15:3181–3191. doi:10.2147/IJN.S253833
  • Seifo N, Cassie H, Radford JR, et al. Silver diamine fluoride for managing carious lesions: an umbrella review. BMC Oral Health. 2019;19(1):145. doi:10.1186/s12903-019-0830-5
  • Şuhani MF, Băciuţ G, Băciuţ M, et al. Current perspectives regarding the application and incorporation of silver nanoparticles into dental biomaterials. Clujul Med. 2018;91(3):274–279. doi:10.15386/cjmed-935
  • Peng JJ, Botelho MG, Matinlinna JP. Silver compounds used in dentistry for caries management: a review. J Dent. 2012;40(7):531–541. doi:10.1016/j.jdent.2012.03.009
  • Orstavik D. Antibacterial properties of and element release from some dental amalgams. Acta Odontol Scand. 1985;43(4):231–239. doi:10.3109/00016358509046503
  • Hegde NN, Attavar SH, Hegde MN, Priya G. Antibacterial activity of dental restorative material: an in vitro study. J Conserv Dent. 2018;21(1):42.doi:10.4103/JCD.JCD_2_17
  • Chatzistavrou X, Lefkelidou A, Papadopoulou L, et al. Bactericidal and bioactive dental composites. Front Physiol. 2018;9:103. doi:10.3389/fphys.2018.00103
  • Jia H, Hou W, Wei L, et al. The structures and antibacterial properties of nano-SiO2 supported silver/zinc-silver materials. Dent Mater. 2008;24(2):244–249. doi:10.1016/j.dental.2007.04.015
  • Kasraei S, Sami L, Hendi S, et al. Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus. Restor Dent Endod. 2014;39(2):109–114. doi:10.5395/rde.2014.39.2.109
  • Cao W, Zhang Y, Wang X, et al. Development of a novel resin-based dental material with dual biocidal modes and sustained release of Ag+ ions based on photocurable core-shell AgBr/cationic polymer nanocomposites. J Mater Sci Mater Med. 2017;28(7):103. doi:10.1007/s10856-017-5918-3
  • Barot T, Rawtani D, Kulkarni P. Physicochemical and biological assessment of silver nanoparticles immobilized Halloysite nanotubes-based resin composite for dental applications. Heliyon. 2020;6(3):e03601. doi:10.1016/j.heliyon.2020.e03601
  • Ren L, Pan Y, Liang Q, et al. In situ synthesis of dental resin matrix containing silver nanoparticles. J Nanosci Nanotechnol. 2019;19(9):5774–5782. doi:10.1166/jnn.2019.16507
  • Ai M, Du Z, Zhu S, et al. Composite resin reinforced with silver nanoparticles-laden hydroxyapatite nanowires for dental application. Dent Mater. 2017;33(1):12–22. doi:10.1016/j.dental.2016.09.038
  • Dutra-Correa M, Leite AABV, de Cara SPHM, et al. Antibacterial effects and cytotoxicity of an adhesive containing low concentration of silver nanoparticles. J Dent. 2018;77:66–71. doi:10.1016/j.jdent.2018.07.010
  • Sonesson M, Bergstrand F, Gizani S, et al. Management of post-orthodontic white spot lesions: an updated systematic review. Eur J Orthod. 2017;39(2):116–121. doi:10.1093/ejo/cjw023
  • Najafi HZ, Azadeh N, Motamedifar M. Evaluation of the preventive effect of composites containing silver and TiO(2) nanoparticles on demineralization around orthodontic brackets. J Contemp Dent Pract. 2020;21(8):874–879. doi:10.5005/jp-journals-10024-2903
  • Mirhashemi A, Bahador A, Sodagar A, et al. Evaluation of antimicrobial properties of nano-silver particles used in orthodontics fixed retainer composites: an experimental in-vitro study. J Dent Res Dent Clin Dent Prospects. 2021;15(2):87–93. doi:10.34172/joddd.2021.015
  • Sánchez-Tito M, Tay LY. Antibacterial and white spot lesions preventive effect of an orthodontic resin modified with silver-nanoparticles. J Clin Exp Dent. 2021;13(7):e685–e691. doi:10.4317/jced.58330
  • Fatani EJ, Almutairi HH, Alharbi AO, et al. In vitro assessment of stainless steel orthodontic brackets coated with titanium oxide mixed Ag for anti-adherent and antibacterial properties against Streptococcus mutans and Porphyromonas gingivalis. Microb Pathog. 2017;112:190–194. doi:10.1016/j.micpath.2017.09.052
  • Metin-Gürsoy G, Taner L, Akca G. Nanosilver coated orthodontic brackets: in vivo antibacterial properties and ion release. Eur J Orthod. 2017;39(1):9–16. doi:10.1093/ejo/cjv097
  • Haghgoo R, Saderi H, Eskandari M, et al. Evaluation of the antimicrobial effect of conventional and nanosilver-containing varnishes on oral streptococci. J Dent (Shiraz). 2014;15(2):57–62.
  • Burgess JO, Vaghela PM. Silver diamine fluoride: a successful anticarious solution with limits. Adv Dent Res. 2018;29(1):131–134. doi:10.1177/0022034517740123
  • Crystal YO, Niederman R. Silver diamine fluoride treatment considerations in children’s caries management. Pediatr Dent. 2016;38(7):466–471.
  • Braga MM, Mendes FM, De Benedetto MS, et al. Effect of silver diammine fluoride on incipient caries lesions in erupting permanent first molars: a pilot study. J Dent Child (Chic). 2009;76(1):28–33.
  • Duangthip D, Chu CH, Lo EC. A randomized clinical trial on arresting dentine caries in preschool children by topical fluorides–18 month results. J Dent. 2016;44:57–63. doi:10.1016/j.jdent.2015.05.006
  • Rosenblatt A, Stamford TC, Niederman R. Silver diamine fluoride: a caries “silver-fluoride bullet”. J Dent Res. 2009;88(2):116–125. doi:10.1177/0022034508329406
  • Urquhart O, Tampi MP, Pilcher L, et al. Nonrestorative treatments for caries: systematic review and network meta-analysis. J Dent Res. 2019;98(1):14–26. doi:10.1177/0022034518800014
  • Crystal YO, Niederman R. Evidence-based dentistry update on silver diamine fluoride. Dent Clin North Am. 2019;63(1):45–68. doi:10.1016/j.cden.2018.08.011
  • Tirupathi S, Nirmala SVSG, Rajasekhar S, Nuvvula S. Comparative cariostatic efficacy of a novel Nano-silver fluoride varnish with 38% silver diamine fluoride varnish a double-blind randomized clinical trial. J Clin Exp Dent. 2019;11(2):e105–e112. doi:10.4317/jced.54995
  • Kanwal N, Brauer DS, Earl J, et al. In-vitro apatite formation capacity of a bioactive glass - containing toothpaste. J Dent. 2018;68:51–58. doi:10.1016/j.jdent.2017.10.015
  • Saafan A, Zaazou MH, Sallam MK, et al. Assessment of photodynamic therapy and nanoparticles effects on caries models. Open Access Maced J Med Sci. 2018;6(7):1289–1295. doi:10.3889/oamjms.2018.241
  • Shrestha A, Kishen A. Antibacterial nanoparticles in endodontics: a review. J Endod. 2016;42(10):1417–1426. doi:10.1016/j.joen.2016.05.021
  • Raura NA-O, Garg A, Arora A, et al. Nanoparticle technology and its implications in endodontics: a review. Biomater Res. 2020;24(1):21. doi:10.1186/s40824-020-00198-z
  • Afkhami F, Akbari S, Chiniforush N. Entrococcus faecalis elimination in root canals using silver nanoparticles, photodynamic therapy, diode laser, or laser-activated nanoparticles: an in vitro study. J Endod. 2017;43(2):279–282. doi:10.1016/j.joen.2016.08.029
  • Chávez-Andrade GM, Tanomaru-Filho M, Rodrigues EM, et al. Cytotoxicity, genotoxicity and antibacterial activity of poly(vinyl alcohol)-coated silver nanoparticles and farnesol as irrigating solutions. Arch Oral Biol. 2017;84:89–93. doi:10.1016/j.archoralbio.2017.09.028
  • Jowkar Z, Hamidi SA, Shafiei F, et al. The effect of silver, zinc oxide, and titanium dioxide nanoparticles used as final irrigation solutions on the fracture resistance of root-filled teeth. Clin Cosmet Investig Dent. 2020;12:141–148. doi:10.2147/CCIDE.S253251
  • Rodrigues CT, de Andrade FB, de Vasconcelos LRSM, et al. Antibacterial properties of silver nanoparticles as a root canal irrigant against Enterococcus faecalis biofilm and infected dentinal tubules. Int Endod J. 2018;51(8):901–911. doi:10.1111/iej.12904
  • Tonini R, Giovarruscio M, Gorni F, et al. In vitro evaluation of antibacterial properties and Smear layer removal/sealer penetration of a novel silver-citrate root canal irrigant. Materials (Basel). 2020;13(1):194. doi:10.3390/ma13010194
  • Generali L, Bertoldi C, Bidossi A, et al. Evaluation of cytotoxicity and antibacterial activity of a new class of silver citrate-based compounds as endodontic irrigants. Materials (Basel). 2020;13(21):5019. doi:10.3390/ma13215019
  • Abrar E, Naseem M, Baig QA, et al. Antimicrobial efficacy of silver diamine fluoride in comparison to photodynamic therapy and chlorhexidine on canal disinfection and bond strength to radicular dentin. Photodiagnosis Photodyn Ther. 2020;32:102066. doi:10.1016/j.pdpdt.2020.102066
  • Al-Madi EM, Al‐Jamie MA, Al‐Owaid NM, et al. Antibacterial efficacy of silver diamine fluoride as a root canal irrigant. Clin Exp Dent Res. 2019;5(5):551–556. doi:10.1002/cre2.222
  • Shafiei F, Memarpour M, Jowkar Z. Effect of silver antibacterial agents on bond strength of fiber posts to root dentin. Braz Dent J. 2020;31(4):409–416. doi:10.1590/0103-6440202003300
  • Mishra P, Tyagi S. Surface analysis of gutta percha after disinfecting with sodium hypochlorite and silver nanoparticles by atomic force microscopy: an in vitro study. Dent Res J (Isfahan). 2018;15(4):242–247.
  • Jonaidi-Jafari N, Izadi M, Javidi P. The effects of silver nanoparticles on antimicrobial activity of ProRoot mineral trioxide aggregate (MTA) and calcium enriched mixture (CEM). J Clin Exp Dent. 2016;8(1):e22–6. doi:10.4317/jced.52568
  • Vazquez-Garcia F, Tanomaru-Filho M, Chávez-Andrade GM, et al. Effect of silver nanoparticles on physicochemical and antibacterial properties of calcium silicate cements. Braz Dent J. 2016;27(5):508–514. doi:10.1590/0103-6440201600689
  • Samiei M, Ghasemi N, Asl-Aminabadi N, et al. Zeolite-silver-zinc nanoparticles: biocompatibility and their effect on the compressive strength of mineral trioxide aggregate. J Clin Exp Dent. 2017;9(3):e356–e360. doi:10.4317/jced.53392
  • Donnermeyer D, Bürklein S, Dammaschke T, et al. Endodontic sealers based on calcium silicates: a systematic review. Odontology. 2019;107(4):421–436. doi:10.1007/s10266-018-0400-3
  • Loyola-Rodríguez JP, Torres-Méndez F, Espinosa-Cristobal LF, et al. Antimicrobial activity of endodontic sealers and medications containing chitosan and silver nanoparticles against Enterococcus faecalis. J Appl Biomater Funct Mater. 2019;17(3):2280800019851771. doi:10.1177/2280800019851771
  • Shashirekha G, Jena A, Mohapatra S. Nanotechnology in dentistry: clinical applications, benefits, and hazards. Compend Contin Educ Dent. 2017;38(5):e1–e4.
  • Haghgoo R, Ahmadvand M, Nyakan M, et al. Antimicrobial efficacy of mixtures of nanosilver and zinc oxide eugenol against Enterococcus faecalis. J Contemp Dent Pract. 2017;18(3):177–181. doi:10.5005/jp-journals-10024-2012
  • Vilela Teixeira AB, de Carvalho Honorato Silva C, Alves OL, et al. Endodontic sealers modified with silver vanadate: antibacterial, compositional, and setting time evaluation. Biomed Res Int. 2019;2019:4676354. doi:10.1155/2019/4676354
  • Teixeira ABV, de Castro DT, Schiavon MA, et al. Cytotoxicity and release ions of endodontic sealers incorporated with a silver and vanadium base nanomaterial. Odontology. 2020;108(4):661–668. doi:10.1007/s10266-020-00507-x
  • Baras BH, Melo MAS, Sun J, et al. Novel endodontic sealer with dual strategies of dimethylaminohexadecyl methacrylate and nanoparticles of silver to inhibit root canal biofilms. Dent Mater. 2019;35(8):1117–1129. doi:10.1016/j.dental.2019.05.014
  • Accardo C, Himel VT, Lallier TE. A novel GuttaFlow sealer supports cell survival and attachment. J Endod. 2014;40(2):231–234. doi:10.1016/j.joen.2013.08.029
  • Martinho FC, Camargo SEA, Fernandes AMM, et al. Comparison of cytotoxicity, genotoxicity and immunological inflammatory biomarker activity of several endodontic sealers against immortalized human pulp cells. Int Endod J. 2018;51(1):41–57. doi:10.1111/iej.12785
  • Marica A, Fritea L, Banica F, et al. Carbon nanotubes for improved performances of endodontic sealer. Materials (Basel). 2021;14(15):4248. doi:10.3390/ma14154248
  • Sanz M, Marco Del Castillo A, Jepsen S, et al. Periodontitis and cardiovascular diseases: consensus report. J Clin Periodontol. 2020;47(3):268–288. doi:10.1111/jcpe.13189
  • Herrera D, Alonso B, León R, et al. Antimicrobial therapy in periodontitis: the use of systemic antimicrobials against the subgingival biofilm. J Clin Periodontol. 2008;35(8 Suppl):45–66. doi:10.1111/j.1600-051X.2008.01260.x
  • Panáček A, Smékalová M, Večeřová R, et al. Silver nanoparticles strongly enhance and restore bactericidal activity of inactive antibiotics against multiresistant Enterobacteriaceae. Colloids Surf B Biointerfaces. 2016;142:392–399. doi:10.1016/j.colsurfb.2016.03.007
  • Prasetyo B, Sugiharti RJ, Mahendra I, et al. Evaluation of silver nanoparticles addition in periodontal dressing for wound tissue healing by 99mTc-ciprofloxacin. J Young Pharm. 2018;11(1):17–20. doi:10.5530/jyp.2019.11.4
  • Li D, Qiu Y, Zhang S, et al. A multifunctional antibacterial and osteogenic nanomedicine: QAS-modified core-shell mesoporous silica containing Ag nanoparticles. Biomed Res Int. 2020;2020:4567049. doi:10.1155/2020/4567049
  • Shao J, Yu N, Kolwijck E, et al. Biological evaluation of silver nanoparticles incorporated into chitosan-based membranes. Nanomedicine (Lond). 2017;12(22):2771–2785. doi:10.2217/nnm-2017-0172
  • Lee D, Lee SJ, Moon JH, et al. Preparation of antibacterial chitosan membranes containing silver nanoparticles for dental barrier membrane applications. Int J Dev Disabil. 2018;66:196–202. doi:10.1080/20473869.2018.1544969
  • Qian Y, Zhou X, Zhang F, et al. Triple PLGA/PCL Scaffold modification including silver impregnation, collagen coating, and electrospinning significantly improve biocompatibility, antimicrobial, and osteogenic properties for orofacial tissue regeneration. ACS Appl Mater Interfaces. 2019;11(41):37381–37396. doi:10.1021/acsami.9b07053
  • Gad MM, Fouda S, Al-Harbi F, et al. PMMA denture base material enhancement: a review of fiber, filler, and nanofiller addition. Int J Nanomedicine. 2017;12:3801–3812. doi:10.2147/IJN.S130722
  • Bacali C, Baldea I, Moldovan M, et al. Flexural strength, biocompatibility, and antimicrobial activity of a polymethyl methacrylate denture resin enhanced with graphene and silver nanoparticles. Clin Oral Investig. 2020;24(8):2713–2725. doi:10.1007/s00784-019-03133-2
  • Zhang Y, Chen -Y-Y, Huang L, et al. The antifungal effects and mechanical properties of silver bromide/cationic polymer nano-composite-modified Poly-methyl methacrylate-based dental resin. Sci Rep. 2017;7(1):1547. doi:10.1038/s41598-017-01686-4
  • Kagami K, Abe Y, Shinonaga Y, et al. Antibacterial and antifungal activities of PMMAs implanted fluorine and/or silver ions by plasma-based ion implantation with argon. Materials (Basel). 2020;13(20):4525. doi:10.3390/ma13204525
  • Gad MM, Abualsaud R, Rahoma A, et al. Double-layered acrylic resin denture base with nanoparticle additions: an in vitro study. J Prosthet Dent. 2022;127:174–183.doi:10.1016/j.prosdent.2020.08.021
  • Suganya S, Ahila SC, Kumar B, et al. Evaluation and comparison of anti-Candida effect of heat cure polymethylmethacrylate resin enforced with silver nanoparticles and conventional heat cure resins: an in vitro study. Indian J Dent Res. 2014;25(2):204–207. doi:10.4103/0970-9290.135923
  • Li Z, Sun J, Lan J, et al. Effect of a denture base acrylic resin containing silver nanoparticles on Candida albicans adhesion and biofilm formation. Gerodontology. 2016;33(2):209–216. doi:10.1111/ger.12142
  • Chen S, Yang J, Jia Y-G, et al. A study of 3D-printable reinforced composite resin: PMMA modified with silver nanoparticles loaded cellulose nanocrystal. Materials (Basel). 2018;11(12):2444. doi:10.3390/ma11122444
  • Swathy JR, Sankar MU, Chaudhary A, Aigal S, Pradeep T. Antimicrobial silver: an unprecedented anion effect. Sci Rep. 2014;4(1):7161. doi:10.1038/srep07161
  • Yoshihara K, Nagaoka N, Umeno A, et al. Antibacterial effect of amino acid-silver complex loaded montmorillonite incorporated in dental acrylic resin. Materials (Basel). 2021;14(6):1442. doi:10.3390/ma14061442
  • Yoshida Y, Churei H, Takeuchi Y, et al. Novel antibacterial mouthguard material manufactured using silver-nanoparticle-embedded ethylene-vinyl acetate copolymer masterbatch. Dent Mater J. 2018;37(3):437–444. doi:10.4012/dmj.2017-226
  • Ginjupalli K, Alla RK, Tellapragada C, et al. Antimicrobial activity and properties of irreversible hydrocolloid impression materials incorporated with silver nanoparticles. J Prosthet Dent. 2016;115(6):722–728. doi:10.1016/j.prosdent.2015.11.006
  • Fujieda T, Uno M, Ishigami H, et al. Addition of platinum and silver nanoparticles to toughen dental porcelain. Dent Mater J. 2012;31(5):711–716. doi:10.4012/dmj.2012-044
  • Fujieda T, Uno M, Ishigami H, et al. Effects of dental porcelain containing silver nanoparticles on static fatigue. Dent Mater J. 2013;32(3):405–408. doi:10.4012/dmj.2012-266
  • Schwarz F, Derks J, Monje A, et al. Peri-implantitis. J Periodontol. 2018;89(Suppl 1):S267–s290. doi:10.1002/JPER.16-0350
  • Dong H, Liu H, Zhou N, et al. Surface modified techniques and emerging functional coating of dental implants. Coatings. 2020;10(11):1012. doi:10.3390/coatings10111012
  • Sobolev A, Valkov A, Kossenko A, et al. Bioactive coating on Ti alloy with high osseointegration and antibacterial Ag nanoparticles. ACS Appl Mater Interfaces. 2019;11(43):39534–39544. doi:10.1021/acsami.9b13849
  • Choi S, Jang Y-S, Jang J-H, et al. Enhanced antibacterial activity of titanium by surface modification with polydopamine and silver for dental implant application. J Appl Biomater Funct Mater. 2019;17(3):2280800019847067. doi:10.1177/2280800019847067
  • Pokrowiecki R, Zareba T, Szaraniec B, et al. In vitro studies of nanosilver-doped titanium implants for oral and maxillofacial surgery. Int J Nanomedicine. 2017;12:4285–4297. doi:10.2147/IJN.S131163
  • Gunputh UF, Le H, Lawton K, et al. Antibacterial properties of silver nanoparticles grown in situ and anchored to titanium dioxide nanotubes on titanium implant against Staphylococcus aureus. Nanotoxicology. 2020;14(1):97–110. doi:10.1080/17435390.2019.1665727
  • Shimabukuro M. Antibacterial property and biocompatibility of silver, copper, and zinc in titanium dioxide layers incorporated by one-step micro-arc oxidation: a review. Antibiotics (Basel). 2020;9(10). doi:10.3390/antibiotics9100716
  • Okuzu Y, Fujibayashi S, Yamaguchi S, et al. In vitro study of antibacterial and osteogenic activity of titanium metal releasing strontium and silver ions. J Biomater Appl. 2021;35(6):670–680. doi:10.1177/0885328220959584
  • Guo C, Cui W, Wang X, et al. Poly-l-lysine/sodium alginate coating loading nanosilver for improving the antibacterial effect and inducing mineralization of dental implants. ACS Omega. 2020;5(18):10562–10571. doi:10.1021/acsomega.0c00986
  • Qiao S, Cao H, Zhao X, et al. Ag-plasma modification enhances bone apposition around titanium dental implants: an animal study in Labrador dogs. Int J Nanomedicine. 2015;10:653–664. doi:10.2147/IJN.S73467
  • Agnihotri S, Mukherji S, Mukherji S. Immobilized silver nanoparticles enhance contact killing and show highest efficacy: elucidation of the mechanism of bactericidal action of silver. Nanoscale. 2013;5(16):7328–7340. doi:10.1039/c3nr00024a
  • Massa MA, Covarrubias C, Bittner M, et al. Synthesis of new antibacterial composite coating for titanium based on highly ordered nanoporous silica and silver nanoparticles. Mater Sci Eng C Mater Biol Appl. 2014;45:146–153. doi:10.1016/j.msec.2014.08.057
  • Györgyey Á, Janovák L, Ádám A, et al. Investigation of the in vitro photocatalytic antibacterial activity of nanocrystalline TiO2 and coupled TiO /Ag containing copolymer on the surface of medical grade titanium. J Biomater Appl. 2016;31(1):55–67. doi:10.1177/0885328216633374
  • Matsubara VH, Igai F, Tamaki R, et al. Use of silver nanoparticles reduces internal contamination of external hexagon implants by Candida albicans. Braz Dent J. 2015;26(5):458–462. doi:10.1590/0103-644020130087
  • Zhang Y, Zheng Z, Yu M, et al. Using an engineered galvanic redox system to generate positive surface potentials that promote osteogenic functions. ACS Appl Mater Interfaces. 2018;10(18):15449–15460. doi:10.1021/acsami.8b02798
  • Liu X, Gan K, Liu H, et al. Antibacterial properties of nano-silver coated PEEK prepared through magnetron sputtering. Dent Mater. 2017;33(9):e348–e360. doi:10.1016/j.dental.2017.06.014
  • Yamada R, Nozaki K, Horiuchi N, et al. Ag nanoparticle-coated zirconia for antibacterial prosthesis. Mater Sci Eng C Mater Biol Appl. 2017;78:1054–1060. doi:10.1016/j.msec.2017.04.149
  • Chen P, Wu Z, Leung A, et al. Fabrication of a silver nanoparticle-coated collagen membrane with anti-bacterial and anti-inflammatory activities for guided bone regeneration. Biomed Mater. 2018;13(6):065014. doi:10.1088/1748-605X/aae15b
  • Selvido DA-O, Bhattarai BP, Riddhabhaya A, Vongsawan K, Arunpraphan S, Wongsirichat N. A review on the application of silver nanoparticles in oral and maxillofacial surgery. Eur J Dent. 2021. doi:10.1055/s-0041-1731589
  • Canellas J, Fraga SRG, Santoro MF, et al. Intrasocket interventions to prevent alveolar osteitis after mandibular third molar surgery: a systematic review and network meta-analysis. J Craniomaxillofac Surg. 2020;48(9):902–913. doi:10.1016/j.jcms.2020.06.012
  • Dong Y, Liu W, Lei Y, et al. Effect of gelatin sponge with colloid silver on bone healing in infected cranial defects. Mater Sci Eng C Mater Biol Appl. 2017;70(Pt 1):371–377. doi:10.1016/j.msec.2016.09.015
  • Dumville JC, Gray TA, Walter CJ, et al. Dressings for the prevention of surgical site infection. Cochrane Database Syst Rev. 2016;12(12):Cd003091. doi:10.1002/14651858.CD003091.pub4
  • Jeong L, Kim MH, Jung J-Y, et al. Effect of silk fibroin nanofibers containing silver sulfadiazine on wound healing. Int J Nanomedicine. 2014;9:5277–5287. doi:10.2147/IJN.S71295
  • Gallo AL, Paladini F, Romano A, et al. Efficacy of silver coated surgical sutures on bacterial contamination, cellular response and wound healing. Mater Sci Eng C Mater Biol Appl. 2016;69:884–893. doi:10.1016/j.msec.2016.07.074
  • Syukri DM, Nwabor OF, Singh S, et al. Antibacterial-coated silk surgical sutures by ex situ deposition of silver nanoparticles synthesized with Eucalyptus camaldulensis eradicates infections. J Microbiol Methods. 2020;174:105955. doi:10.1016/j.mimet.2020.105955
  • De Simone S, Gallo AL, Paladini F, et al. Development of silver nano-coatings on silk sutures as a novel approach against surgical infections. J Mater Sci Mater Med. 2014;25(9):2205–2214. doi:10.1007/s10856-014-5262-9
  • Baygar T, Sarac N, Ugur A, et al. Antimicrobial characteristics and biocompatibility of the surgical sutures coated with biosynthesized silver nanoparticles. Bioorg Chem. 2019;86:254–258. doi:10.1016/j.bioorg.2018.12.034
  • Zheng DW, Deng -W-W, Song W-F, et al. Biomaterial-mediated modulation of oral microbiota synergizes with PD-1 blockade in mice with oral squamous cell carcinoma. Nat Biomed Eng. 2021. doi:10.1038/s41551-021-00807-9