781
Views
7
CrossRef citations to date
0
Altmetric
Original Research

Screening of Chitosan Derivatives-Carbon Dots Based on Antibacterial Activity and Application in Anti-Staphylococcus aureus Biofilm

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & show all
Pages 937-952 | Published online: 04 Mar 2022

References

  • Yougbare S, Chou HL, Yang CH, et al. Facet-dependent gold nanocrystals for effective photothermal killing of bacteria. J Hazard Mater. 2021;407:124617. doi:10.1016/j.jhazmat.2020.124617
  • Parasuraman P, Shaji C, Sharan A. Biogenic Silver Nanoparticles Decorated with Methylene Blue Potentiated the Photodynamic Inactivation of Pseudomonas aeruginosa and Staphylococcus aureus. Pharmaceutics. 2020;12(8):709. doi:10.3390/pharmaceutics12080709
  • Parasuraman P, Anju VT, Lal SBS, et al. Synthesis and antimicrobial photodynamic effect of methylene blue conjugated carbon nanotubes on E. coli and S. aureus. Photochem Photobiol Sci. 2019;18(2):563–576. doi:10.1039/c8pp00369f
  • Anju VT, Paramanantham P, Siddhardha B, et al. Malachite green-conjugated multi-walled carbon nanotubes potentiate antimicrobial photodynamic inactivation of planktonic cells and biofilms of Pseudomonas aeruginosa and Staphylococcus aureus. Int J Nanomed. 2019;14:3861–3874. doi:10.2147/IJN.S202734
  • Anju VT, Paramanantham P. Antimicrobial photodynamic activity of toluidine blue-carbon nanotube conjugate against Pseudomonas aeruginosa and Staphylococcus aureus - understanding the mechanism of action. Photodiagnosis Photodyn Ther. 2019;27:305–316. doi:10.1016/j.pdpdt.2019.06.014
  • Parasuraman P, Antony AP. Antimicrobial photodynamic activity of toluidine blue encapsulated in mesoporous silica nanoparticles against Pseudomonas aeruginosa and Staphylococcus aureus. Biofouling. 2019;35(1):89–103. doi:10.1080/08927014.2019.1570501
  • Paramanantham P, Siddhardha B, Lal SBS, et al. Antimicrobial photodynamic therapy on Staphylococcus aureus and Escherichia coli using malachite green encapsulated mesoporous silica nanoparticles: an in vitro study. PeerJ. 2019;7:e7454. doi:10.7717/peerj.7454
  • Mutalik C, Krisnawati DI, Patil SB, et al. Phase-Dependent MoS2 Nanoflowers for Light-Driven Antibacterial Application. ACS Sustain Chem Eng. 2021;9(23):7904–7912. doi:10.1021/acssuschemeng.1c01868
  • Feng J, Yu YL, Wang JH. Porphyrin structure carbon dots under red light irradiation for bacterial inactivation. New J Chem. 2020;44(42):18225–18232. doi:10.1039/d0nj04013d
  • Li YJ, Harroun SG, Su YC, et al. Synthesis of self-assembled spermidine-carbon quantum dots effective against multidrug-resistant bacteria. Adv Healthc Mater. 2016;5(19):2545–2554. doi:10.1002/adhm.201600297
  • Bing W, Sun H, Yan Z, Ren J, Qu X. Programmed bacteria death induced by carbon dots with different surface charge. Small. 2016;12(34):4713–4718. doi:10.1002/smll.201600294
  • Li H, Huang J, Song Y, et al. Degradable carbon dots with broad-spectrum antibacterial activity. ACS Appl Mater Interfaces. 2018;10(32):26936–26946. doi:10.1021/acsami.8b08832
  • Mutalik C, Okoro G, Krisnawati DI, et al. Copper sulfide with morphology-dependent photodynamic and photothermal antibacterial activities. J Colloid Interface Sci. 2022;607:1825–1835. doi:10.1016/j.jcis.2021.10.019
  • Siddhardha B, Pandey U, Kaviyarasu K, et al. Chrysin-Loaded Chitosan Nanoparticles Potentiates Antibiofilm Activity against Staphylococcus Aureus. Pathogens. 2020;9(2):115. doi:10.3390/pathogens9020115
  • Liang G, Shi H, Qi Y, et al. Specific Anti-biofilm Activity of Carbon Quantum Dots by Destroying P. gingivalis Biofilm Related Genes. Int J Nanomed. 2020;15:5473–5489. doi:10.2147/IJN.S253416
  • Li P, Liu S, Zhang G, et al. Design of pH-responsive dissociable nanosystem based on carbon dots with enhanced anti-biofilm property and excellent biocompatibility. ACS Appl Bio Mater. 2020;3(2):1105–1115. doi:10.1021/acsabm.9b01053
  • Singh AK, Prakash P, Singh R, et al. Curcumin quantum dots mediated degradation of bacterial biofilms. Front Microbiol. 2017;8:1517. doi:10.3389/fmicb.2017.01517
  • Wang K, Ji Q, Li H, et al. Synthesis and antibacterial activity of silver@carbon nanocomposites. J Inorg Biochem. 2017;166:64–67. doi:10.1016/j.jinorgbio.2016.11.002
  • Song Y, Lu F, Li H, et al. Degradable carbon dots from cigarette smoking with broad-spectrum antimicrobial activities against drug-resistant bacteria. ACS Appl Bio Mater. 2018;1(6):1871–1879. doi:10.1021/acsabm.8b00421
  • Li X, Yeh YC, Giri K, et al. Control of Nanoparticle Penetration into Biofilms through Surface Design. Chem Commun. 2015;51:282–285. doi:10.1039/C4CC07737G
  • Chen S, Li Q, Wang X, Yang YW, Gao H. Multifunctional bacterial imaging and therapy systems. J Mater Chem B. 2018;6(32):5198–5214. doi:10.1039/C8TB01519H
  • Travlou NA, Giannakoudakis DA, Algarra M, Labella AM, Rodríguez-Castellón E, Bandosz TJ. N-doped carbon quantum dots: surface chemistry dependent antibacterial activity. Carbon. 2018;135:104–111. doi:10.1016/j.carbon.2018.04.018
  • Jian HJ, Wu RS, Lin TY, et al. Super-cationic carbon quantum dots synthesized from spermidine as an eye drop formulation for topical treatment of bacterial keratitis. ACS Nano. 2017;11(7):6703–6716. doi:10.1021/acsnano.7b01023
  • Cui F, Ye Y, Ping J, Sun X. Carbon dots: current advances in pathogenic bacteria monitoring and prospect applications. Biosens Bioelectron. 2020;156:112085. doi:10.1016/j.bios.2020.112085
  • Huang P, Lin J, Wang X, et al. Light‐triggered theranostics based on photosensitizer‐conjugated carbon dots for simultaneous enhanced‐fluorescence imaging and photodynamic therapy. Adv Mater. 2012;24(37):5104–5110. doi:10.1002/adma.201200650
  • Li H, Kang Z, Liu Y, Lee ST. Carbon nanodots: synthesis, properties and applications. J Mater Chem. 2012;22(46):24230–24253. doi:10.1039/C2JM34690G
  • Niu WJ, Li Y, Zhu R, Shan D, Fan YR, Zhang XJ. Ethylenediamine-assisted hydrothermal synthesis of nitrogen-doped carbon quantum dots as fluorescent probes for sensitive biosensing and bioimaging. Sens Actuators B. 2015;218:229–236. doi:10.1016/j.snb.2015.05.006
  • Sun S, Zhang L, Jiang K, Wu A, Lin H. Toward high-efficient red emissive carbon dots: facile preparation, unique properties, and applications as multifunctional theranostic agents. Chem Mater. 2016;28(23):8659–8668. doi:10.1021/acs.chemmater.6b03695
  • Vishwakarma S, Rajani M, Bagul M, Goyal R. A rapid method for the isolation of swertiamarin from Enicostemma littorale. Pharm Biol. 2004;42(6):400–403. doi:10.1080/13880200490885095
  • Ding H, Wei JS, Zhang P, Zhou ZY, Gao QY, Xiong HM. Solvent‐controlled synthesis of highly luminescent carbon dots with a wide color gamut and narrowed emission peak widths. Small. 2018;14(22):1800612. doi:10.1002/smll.201800612
  • Wang Y, Hu A. Carbon quantum dots: synthesis, properties and applications. J Mater Chem C. 2014;2:6921–6939. doi:10.1039/C4TC00988F
  • Wang H, Zhang M, Ma Y, et al. Selective inactivation of Gram-negative bacteria by carbon dots derived from natural biomass: Artemisia argyi leaves. J Mater Chem B. 2020;8(13):2666–2672. doi:10.1039/C9TB02735A
  • Datta KKR, Qi G, Zboril R, Giannelis EP. Yellow emitting carbon dots with superior colloidal, thermal, and photochemical stabilities. J Mater Chem C. 2016;4(41):9798–9803. doi:10.1039/C6TC03452G
  • Jiang K, Wang Y, Gao X, Cai C, Lin H. Facile, quick, and gram‐scale synthesis of ultralong-lifetime room-temperature-phosphorescent carbon dots by microwave irradiation. Angew Chem Int Edit. 2018;57(21):6216–6220. doi:10.1002/anie.201802441
  • Chen F, Shi Z, Neoh KG, Kang ET. Antioxidant and antibacterial activities of eugenol and carvacrol-grafted chitosan nanoparticles. Biotechnol Bioeng. 2009;104(1):30–39. doi:10.1002/bit.22363
  • Zhao C, Wu L, Wang X, et al. Quaternary ammonium modified carbon quantum dots as an antimicrobial agent against gram-positive bacteria for the treatment of MRSA-infected pneumonia in mice. Carbon. 2020;163:70–84. doi:10.1016/j.carbon.2020.03.009
  • Yang J, Zhang X, Ma Y, et al. Carbon dot-based platform for simultaneous bacterial distinguishment and antibacterial applications. ACS Appl Mater Interfaces. 2016;8(47):32170–32181. doi:10.1021/acsami.6b10398
  • Yuan H, Liu Z, Liu L, Lv F, Wang Y, Wang S. Cationic conjugated polymers for discrimination of microbial pathogens. Adv Mater. 2014;26:4333–4338. doi:10.1002/adma.201400636
  • Forster BM, Marquis H. Protein transport across the cell wall of monoderm gram-positive bacteria. Mol Microbiol. 2012;84:405–413. doi:10.1111/j.1365-2958.2012.08040.x
  • Lu F, Ma Y, Wang H, et al. Water-solvable carbon dots derived from curcumin and citric acid with enhanced broad-spectrum antibacterial and antibiofilm activity. Mater Today Commun. 2021;26:102000. doi:10.1016/j.mtcomm.2020.102000
  • Lin F, Li C, Chen Z. Bacteria-derived carbon dots inhibit biofilm formation of Escherichia coli without affecting cell growth. Front Microbiol. 2018;9:259. doi:10.3389/fmicb.2018.00259
  • Ran HH, Cheng X, Bao YW, et al. Multifunctional quaternized carbon dots with enhanced biofilm penetration and eradication efficiencies. J Mater Chem B. 2019;7(33):5104–5114. doi:10.1039/C9TB00681H
  • Li P, Yang X, Zhang X, et al. Surface chemistry-dependent antibacterial and antibiofilm activities of polyamine-functionalized carbon quantum dots. J Mater Sci. 2020;55(35):16744–16757. doi:10.1007/s10853-020-05262-6
  • Li X, Huang R, Tang FK, et al. Red-Emissive Guanylated Polyene-Functionalized Carbon Dots Arm Oral Epithelia against Invasive Fungal Infections. ACS Appl Mater Interfaces. 2019;11(50):46591–46603. doi:10.1021/acsami.9b18003
  • Carlson RP, Taffs R, Davison WM, Stewart PS. Anti-biofilm properties of chitosan-coated surfaces. J Biomater Sci Polymer. 2008;19(8):1035–1046. doi:10.1163/156856208784909372
  • Ju B, Nie H, Zhang XG, et al. Inorganic salt incorporated solvothermal synthesis of multicolor carbon dots, emission mechanism, and antibacterial study. ACS Appl Nano Mater. 2018;1(11):6131–6138. doi:10.1021/acsanm.8b01355
  • Nie X, Jiang C, Wu S, et al. Carbon quantum dots: a bright future as photosensitizers for in vitro antibacterial photodynamic inactivation. J Photochem Photobiol. 2020;206:111864. doi:10.1016/j.jphotobiol.2020.111864
  • Lin H, Shen Y, Chen D, et al. Feasibility study on quantitative measurements of singlet oxygen generation using singlet oxygen sensor green. J Fluoresc. 2013;23(1):41–47. doi:10.1007/s10895-012-1114-5
  • Baase WA, Johnson J. Circular dichroism and DNA secondary structure. Nuc Acids Res. 1979;6(2):797–814. doi:10.1093/nar/6.2.797
  • Kelly SM, Jess TJ, Price NC. How to study proteins by circular dichroism, Biochim. Biophys Acta. 2005;1751:119–139. doi:10.1016/j.bbapap.2005.06.005
  • Pattnaik SS, Ranganathan SK, Ampasala DR, Syed A, Ameen F, Busi S. Attenuation of quorum sensing regulated virulence and biofilm development in Pseudomonas aeruginosa PAO1 by Diaporthe phaseolorum SSP12. Microb Pathog. 2018;118:177–189. doi:10.1016/j.micpath.2018.03.031