643
Views
18
CrossRef citations to date
0
Altmetric
Review

Cell-Seeded Biomaterial Scaffolds: The Urgent Need for Unanswered Accelerated Angiogenesis

, , , , ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 1035-1068 | Published online: 12 Mar 2022

References

  • De Santis MM, Alsafadi HN, Tas S, et al. Extracellular matrix reinforced bioinks for 3D bioprinting human tissue. Adv Mater. 2021;33:2005476. Wiley Online Library. doi:10.1002/adma.202005476
  • Nasr SM, Rabiee N, Hajebi S, et al. Biodegradable nanopolymers in cardiac tissue engineering: from concept towards nanomedicine. Int J Nanomedicine. 2020;15:4205. doi:10.2147/IJN.S245936
  • Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin CT. Progress in 3D bioprinting Technology for tissue/organ regenerative engineering. Biomaterials. 2020;226:119536. Elsevier. doi:10.1016/j.biomaterials.2019.119536
  • Mahfouzi SH, Tali SHS, Amoabediny G. 3D bioprinting for lung and tracheal tissue engineering: criteria, advances, challenges, and future directions. Bioprinting. 2021;21:e00124. Elsevier. doi:10.1016/j.bprint.2020.e00124
  • Shahrezaei F, Mansouri Y, Zinatizadeh A, Akhbari A. Photocatalytic degradation of aniline using TiO2 nanoparticles in a vertical circulating photocatalytic reactor. Int J Photoenergy. 2012;2012:1–8. doi:10.1155/2012/430638
  • Ma X, Agas A, Siddiqui Z, et al. Angiogenic peptide hydrogels for treatment of traumatic brain injury. Bioact Mater. 2020;5(1):124–132. doi:10.1016/j.bioactmat.2020.01.005
  • Rabiee N, Yaraki MT, Garakani SM, et al. Recent advances in porphyrin-based nanocomposites for effective targeted imaging and therapy. Biomaterials. 2020;232:119707. doi:10.1016/j.biomaterials.2019.119707
  • Rahimnejad M, Nasrollahi Boroujeni N, Jahangiri S, et al. Prevascularized micro-/nano-sized spheroid/bead aggregates for vascular tissue engineering. Nano Micro Lett. 2021;13(1):1–24. doi:10.1007/s40820-021-00697-1
  • Mishra R, Panda AK, De Mandal S, Shakeel M, Bisht SS, Khan J. Natural anti-biofilm agents: strategies to control biofilm-forming pathogens. Front Microbiol. 2020;11:2640. Frontiers. doi:10.3389/fmicb.2020.566325
  • Maghsoudi S, Shahraki BT, Rabiee N, et al. Burgeoning polymer nano blends for improved controlled drug release: a review. Int J Nanomedicine. 2020;15:4363. doi:10.2147/IJN.S252237
  • Tavakolizadeh M, Pourjavadi A, Ansari M, et al. An environmentally friendly wound dressing based on a self-healing, extensible and compressible antibacterial hydrogel. Green Chem. 2021;23(3):1312–1329. doi:10.1039/D0GC02719G
  • Farokhi M, Mottaghitalab F, Fatahi Y, et al. Silk fibroin scaffolds for common cartilage injuries: possibilities for future clinical applications. Eur Polym J. 2019;115:251–267. Elsevier. doi:10.1016/j.eurpolymj.2019.03.035
  • Gupta SK, Dinda AK, Potdar PD, Mishra NC. Modification of decellularized goat-lung scaffold with chitosan/nanohydroxyapatite composite for bone tissue engineering applications. Biomed Res Int. 2013;2013:1–11. Hindawi. doi:10.1155/2013/651945
  • Vimalraj S, Rajalakshmi S, Saravanan S, et al. Synthesis and characterization of zinc-silibinin complexes: a potential bioactive compound with angiogenic, and antibacterial activity for bone tissue engineering. Colloids Surf B Biointerfaces. 2018;167:134–143. Elsevier. doi:10.1016/j.colsurfb.2018.04.007
  • Chen W, Xu K, Tao B, et al. Multilayered coating of titanium implants promotes coupled osteogenesis and angiogenesis in vitro and in vivo. Acta Biomater. 2018;74:489–504. Elsevier. doi:10.1016/j.actbio.2018.04.043
  • Linville RM, Arevalo D, Maressa JC, Zhao N, Searson PC. Three-dimensional induced pluripotent stem-cell models of human brain angiogenesis. Microvasc Res. 2020;132:104042. Elsevier. doi:10.1016/j.mvr.2020.104042
  • Chakraborty S, Ponrasu T, Chandel S, Dixit M, Muthuvijayan V. Reduced graphene oxide-loaded nanocomposite scaffolds for enhancing angiogenesis in tissue engineering applications. R Soc Open Sci. 2018;5:172017. The Royal Society Publishing. doi:10.1098/rsos.172017
  • Norahan MH, Pourmokhtari M, Saeb MR, Bakhshi B, Zomorrod MS, Baheiraei N. Electroactive cardiac patch containing reduced graphene oxide with potential antibacterial properties. Mater Sci Eng C. 2019;104:109921. Elsevier. doi:10.1016/j.msec.2019.109921
  • Wang X, Lin M, Kang Y. Engineering porous -tricalcium phosphate (-TCP) scaffolds with multiple channels to promote cell migration, proliferation, and angiogenesis. ACS Appl Mater Interfaces. 2019;11:9223–9232. ACS Publications. doi:10.1021/acsami.8b22041
  • Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res. 1971;5:117–141. Wiley Online Library. doi:10.1002/jbm.820050611
  • Eke G, Mangir N, Hasirci N, MacNeil S, Hasirci V. Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering. Biomaterials. 2017;129:188–198. Elsevier. doi:10.1016/j.biomaterials.2017.03.021
  • Wang B, Lv X, Chen S, et al. Use of heparinized bacterial cellulose based scaffold for improving angiogenesis in tissue regeneration. Carbohydr Polym. 2018;181:948–956. Elsevier. doi:10.1016/j.carbpol.2017.11.055
  • Freeman I, Cohen S. The influence of the sequential delivery of angiogenic factors from affinity-binding alginate scaffolds on vascularization. Biomaterials. 2009;30:2122–2131. Elsevier. doi:10.1016/j.biomaterials.2008.12.057
  • Zarrintaj P, Manouchehri S, Ahmadi Z, et al. Agarose-based biomaterials for tissue engineering. Carbohydr Polym. 2018;187:66–84. Elsevier. doi:10.1016/j.carbpol.2018.01.060
  • Rustad KC, Wong VW, Sorkin M, et al. Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold. Biomaterials. 2012;33:80–90. Elsevier. doi:10.1016/j.biomaterials.2011.09.041
  • Laschke MW, Rücker M, Jensen G, et al. Improvement of vascularization of PLGA scaffolds by inosculation of in situ-preformed functional blood vessels with the host microvasculature. Ann Surg. 2008;248:939–948. LWW. doi:10.1097/SLA.0b013e31818fa52f
  • Detsch R, Stoor P, Grünewald A, Roether JA, Lindfors NC, Boccaccini AR. Increase in VEGF secretion from human fibroblast cells by bioactive glass S53P4 to stimulate angiogenesis in bone. J Biomed Mater Res A. 2014;102:4055–4061. Wiley Online Library. doi:10.1002/jbm.a.35069
  • Gniesmer S, Brehm R, Hoffmann A, et al. In vivo analysis of vascularization and biocompatibility of electrospun polycaprolactone fibre mats in the rat femur chamber. J Tissue Eng Regen Med. 2019;13:1190–1202. Wiley Online Library. doi:10.1002/term.2868
  • Gérard C, Doillon CJ. Facilitating tissue infiltration and angiogenesis in a tubular collagen scaffold. J Biomed Mater Res A. 2010;93:615–624. Wiley Online Library. doi:10.1002/jbm.a.32568
  • Lu J, Guan F, Cui F, et al. Enhanced angiogenesis by the hyaluronic acid hydrogels immobilized with a VEGF mimetic peptide in a traumatic brain injury model in rats. Regen Biomater. 2019;6:325–334. Oxford University Press. doi:10.1093/rb/rbz027
  • Chan EC, Kuo S-M, Kong AM, et al. Three dimensional collagen scaffold promotes intrinsic vascularisation for tissue engineering applications. PLoS One. 2016;11:e0149799. Public Library of Science San Francisco, CA USA. doi:10.1371/journal.pone.0149799
  • Nour S, Baheiraei N, Imani R, et al. A review of accelerated wound healing approaches: biomaterial-assisted tissue remodeling. J Mater Sci Mater Med. 2019;30(10):120. doi:10.1007/s10856-019-6319-6
  • Prashanth KVH, Tharanathan RN. Depolymerized products of chitosan as potent inhibitors of tumor-induced angiogenesis. Biochim Biophys Acta Gen Subj. 2005;1722:22–29. Elsevier. doi:10.1016/j.bbagen.2004.11.009
  • Jin H, Pi J, Yang F, et al. Ursolic acid-loaded chitosan nanoparticles induce potent anti-angiogenesis in tumor. Appl Microbiol Biotechnol. 2016;100:6643–6652. Springer. doi:10.1007/s00253-016-7360-8
  • Perets A, Baruch Y, Weisbuch F, Shoshany G, Neufeld G, Cohen S. Enhancing the vascularization of three dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J Biomed Mater Res A. 2003;65:489–497. Wiley Online Library. doi:10.1002/jbm.a.10542
  • Hegen A, Blois A, Tiron CE, et al. Efficient in vivo vascularization of tissue engineering scaffolds. J Tissue Eng Regen Med. 2011;5:e52–e62. Wiley Online Library. doi:10.1002/term.336
  • Singh S, Wu BM, Dunn JCY. Delivery of VEGF using collagen coated polycaprolactone scaffolds stimulates angiogenesis. J Biomed Mater Res A. 2012;100:720–727. Wiley Online Library. doi:10.1002/jbm.a.34010
  • Kampmann A, Lindhorst D, Schumann P, et al. Additive effect of mesenchymal stem cells and VEGF to vascularization of PLGA scaffolds. Microvasc Res. 2013;90:71–79. Elsevier. doi:10.1016/j.mvr.2013.07.006
  • Dikici S, Claeyssens F, MacNeil S. Bioengineering vascular networks to study angiogenesis and vascularization of physiologically relevant tissue models in vitro. ACS Biomater Sci Eng. 2020;6:3513–3528. ACS Publications. doi:10.1021/acsbiomaterials.0c00191
  • Gerhardt L-C, Widdows KL, Erol MM, et al. The pro-angiogenic properties of multi-functional bioactive glass composite scaffolds. Biomaterials. 2011;32:4096–4108. Elsevier. doi:10.1016/j.biomaterials.2011.02.032
  • Day RM, Boccaccini AR, Shurey S, et al. Assessment of polyglycolic acid mesh and bioactive glass for soft-tissue engineering scaffolds. Biomaterials. 2004;25:5857–5866. Elsevier. doi:10.1016/j.biomaterials.2004.01.043
  • Zarrintaj P, Ramsey JD, Samadi A, et al. Poloxamer: a versatile tri-block copolymer for biomedical applications. Acta Biomater. 2020;110:37–67. Elsevier. doi:10.1016/j.actbio.2020.04.028
  • Haifei S, Xingang W, Shoucheng W, Zhengwei M, Chuangang Y, Chunmao H. The effect of collagen–chitosan porous scaffold thickness on dermal regeneration in a one-stage grafting procedure. J Mech Behav Biomed Mater. 2014;29:114–125. Elsevier. doi:10.1016/j.jmbbm.2013.08.031
  • Laschke MW, Strohe A, Scheuer C, et al. In vivo biocompatibility and vascularization of biodegradable porous polyurethane scaffolds for tissue engineering. Acta Biomater. 2009;5:1991–2001. Elsevier. doi:10.1016/j.actbio.2009.02.006
  • Bezuidenhout D, Davies N, Black M, Schmidt C, Oosthuysen A, Zilla P. Covalent surface heparinization potentiates porous polyurethane scaffold vascularization. J Biomater Appl. 2010;24:401–418. Sage Publications Sage UK: London, England. doi:10.1177/0885328208097565
  • Lee H-P, Chen P-C, Wang S-W, et al. Plumbagin suppresses endothelial progenitor cell-related angiogenesis in vitro and in vivo. J Funct Foods. 2019;52:537–544. Elsevier. doi:10.1016/j.jff.2018.11.040
  • DeLong SA, Moon JJ, West JL. Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration. Biomaterials. 2005;26:3227–3234. Elsevier. doi:10.1016/j.biomaterials.2004.09.021
  • Zhang K, Song L, Wang J, et al. Strategy for constructing vascularized adipose units in poly (l-glutamic acid) hydrogel porous scaffold through inducing in-situ formation of ASCs spheroids. Acta Biomater. 2017;51:246–257. Elsevier. doi:10.1016/j.actbio.2017.01.043
  • He S, Walimbe T, Chen H, et al. Functionalized extracellular matrix scaffolds loaded with endothelial progenitor cells promote neovascularization and diabetic wound healing. bioRxiv. 2021. Cold Spring Harbor Laboratory. doi:10.1101/2021.02.02.429469
  • Fishman JM, Wiles K, Lowdell MW, et al. Airway tissue engineering: an update. Expert Opin Biol Ther. 2014;14:1477–1491. Taylor & Francis. doi:10.1517/14712598.2014.938631
  • Yazdi MK, Taghizadeh A, Taghizadeh M, et al. Agarose-based biomaterials for advanced drug delivery. J Control Release. 2020;326:523–543.
  • Verstegen MMA, Willemse J, Van Den Hoek S, et al. Decellularization of whole human liver grafts using controlled perfusion for transplantable organ bioscaffolds. Stem Cells Dev. 2017;26:1304–1315. Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA. doi:10.1089/scd.2017.0095
  • Hajebi S, Mohammadi Nasr S, Rabiee N, et al. Bioresorbable composite polymeric materials for tissue engineering applications. Int J Polym Mater Polym Biomater. 2021;1–15. doi:10.1080/00914037.2020.1765365
  • Baheiraei N, Eyni H, Bakhshi B, Najafloo R, Rabiee N. Effects of strontium ions with potential antibacterial activity on in vivo bone regeneration. Sci Rep. 2021;11(1):1–9. doi:10.1038/s41598-021-88058-1
  • Zhou H, Kitano K, Ren X, et al. Bioengineering human lung grafts on porcine matrix. Ann Surg. 2018;267:590–598. LWW. doi:10.1097/SLA.0000000000002129
  • Rabiee N, Bagherzadeh M, Ghadiri AM, et al. Multifunctional 3D hierarchical bioactive green carbon-based nanocomposites. ACS Sustain Chem Eng. 2021;9(26):8706–8720. doi:10.1021/acssuschemeng.1c00781
  • Rabiee N, Bagherzadeh M, Heidarian Haris M, et al. Polymer-coated NH2-UiO-66 for the codelivery of DOX/pCRISPR. ACS Appl Mater Interfaces. 2021;13(9):10796–10811. doi:10.1021/acsami.1c01460
  • Nichols JE, La Francesca S, Vega SP, et al. Giving new life to old lungs: methods to produce and assess whole human paediatric bioengineered lungs. J Tissue Eng Regen Med. 2017;11:2136–2152. Wiley Online Library. doi:10.1002/term.2113
  • Rabiee N, Bagherzadeh M, Jouyandeh M, et al. Natural polymers decorated MOF-MXene nanocarriers for co-delivery of doxorubicin/pCRISPR. ACS Applied Bio Mater. 2021;4(6):5106–5121. doi:10.1021/acsabm.1c00332
  • Gilpin SE, Charest JM, Ren X, et al. Regenerative potential of human airway stem cells in lung epithelial engineering. Biomaterials. 2016;108:111–119. Elsevier. doi:10.1016/j.biomaterials.2016.08.055
  • Saberianpour S, Heidarzadeh M, Geranmayeh MH, Hosseinkhani H, Rahbarghazi R, Nouri M. Tissue engineering strategies for the induction of angiogenesis using biomaterials. J Biol Eng. 2018;12:1–15. Springer. doi:10.1186/s13036-018-0133-4
  • El-Sherbiny IM, Yacoub MH. Hydrogel scaffolds for tissue engineering: progress and challenges. Glob Cardiol Sci Pract. 2013;2013:38. Hamad bin Khalifa University Press (HBKU Press). doi:10.5339/gcsp.2013.38
  • Tsuchiya T, Obata T, Hatachi G, Nagayasu T. Lung microvascular niche, repair, and engineering. Front Bioeng Biotechnol. 2020;8:105. Frontiers. doi:10.3389/fbioe.2020.00105
  • Bourke BM, Roche WR, Appleberg M. Endothelial cell harvest for seeding vascular prostheses: the influence of technique on cell function, viability, and number. J Vasc Surg. 1986;4:257–263. Elsevier. doi:10.1016/0741-5214(86)90195-3
  • Rücker M, Laschke MW, Junker D, et al. Angiogenic and inflammatory response to biodegradable scaffolds in dorsal skinfold chambers of mice. Biomaterials. 2006;27:5027–5038. Elsevier. doi:10.1016/j.biomaterials.2006.05.033
  • Druecke D, Langer S, Lamme E, et al. Neovascularization of poly (ether ester) block copolymer scaffolds in vivo: long term investigations using intravital fluorescent microscopy. J Biomed Mater Res A. 2004;68:10–18. Wiley Online Library. doi:10.1002/jbm.a.20016
  • Nillesen STM, Geutjes PJ, Wismans R, Schalkwijk J, Daamen WF, van Kuppevelt TH. Increased angiogenesis and blood vessel maturation in acellular collagen–heparin scaffolds containing both FGF2 and VEGF. Biomaterials. 2007;28:1123–1131. Elsevier. doi:10.1016/j.biomaterials.2006.10.029
  • Laschke MW, Rücker M, Jensen G, et al. Incorporation of growth factor containing Matrigel promotes vascularization of porous PLGA scaffolds. J Biomed Mater Res A. 2008;85:397–407. Wiley Online Library. doi:10.1002/jbm.a.31503
  • Shepherd BR, Enis DR, Wang F, et al. Vascularization and engraftment of a human skin substitute using circulating progenitor cell derived endothelial cells. FASEB J. 2006;20:1739–1741. Wiley Online Library. doi:10.1096/fj.05-5682fje
  • Rabiee N, Bagherzadeh M, Ghadiri AM, et al. Turning toxic nanomaterials into a safe and bioactive nanocarrier for co-delivery of DOX/pCRISPR. ACS Applied Bio Mater. 2021;4(6):5336–5351. ACS Publications. doi:10.1021/acsabm.1c00447
  • Wagner ER, Parry J, Dadsetan M, et al. VEGF-mediated angiogenesis and vascularization of a fumarate-crosslinked polycaprolactone (PCLF) scaffold. Connect Tissue Res. 2018;59:542–549. Taylor & Francis. doi:10.1080/03008207.2018.1424145
  • Seidi F, Yazdi MK, Jouyandeh M, et al. Chitosan-based blends for biomedical applications. Int J Biol Macromol. 2021;183:1818–1850. Elsevier.
  • Manouchehri S, Bagheri B, Rad SH, et al. Electroactive bio-epoxy incorporated chitosan-oligoaniline as an advanced hydrogel coating for neural interfaces. Prog Org Coat. 2019;131:389–396. Elsevier. doi:10.1016/j.porgcoat.2019.03.022
  • Chen M, Zhang Y, Zhang W, Li J. Polyhedral oligomeric silsesquioxane-incorporated gelatin hydrogel promotes angiogenesis during vascularized bone regeneration. ACS Appl Mater Interfaces. 2020;12(20):22410–22425. doi:10.1021/acsami.0c00714
  • Long G, Liu D, He X, et al. A dual functional collagen scaffold coordinates angiogenesis and inflammation for diabetic wound healing. Biomater Sci. 2020;8:6337–6349. Royal Society of Chemistry. doi:10.1039/D0BM00999G
  • Wong HK, Lam CRI, Wen F, et al. Novel method to improve vascularization of tissue engineered constructs with biodegradable fibers. Biofabrication. 2016;8:15004. IOP Publishing. doi:10.1088/1758-5090/8/1/015004
  • He Q, Zhao Y, Chen B, et al. Improved cellularization and angiogenesis using collagen scaffolds chemically conjugated with vascular endothelial growth factor. Acta Biomater. 2011;7:1084–1093. Elsevier. doi:10.1016/j.actbio.2010.10.022
  • Andrade CF, Wong AP, Waddell TK, Keshavjee S, Liu M. Cell-based tissue engineering for lung regeneration. Am J Physiol Lung Cell Mol Physiol. 2007;292:L510–L518. American Physiological Society. doi:10.1152/ajplung.00175.2006
  • Liu S, Zhang H, Zhang X, et al. Synergistic angiogenesis promoting effects of extracellular matrix scaffolds and adipose-derived stem cells during wound repair. Tissue Eng Part A. 2011;17:725–739. Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA. doi:10.1089/ten.tea.2010.0331
  • Hsia CCW, Hyde DM, Weibel ER. Lung structure and the intrinsic challenges of gas exchange. Compr Physiol. 2016;6:827. NIH Public Access.
  • Kargozar S, Baino F, Hamzehlou S, Hill RG, Mozafari M. Bioactive glasses: sprouting angiogenesis in tissue engineering. Trends Biotechnol. 2018;36:430–444. Elsevier. doi:10.1016/j.tibtech.2017.12.003
  • Gerhardt LC, Widdows KL, Erol MM, et al. Neocellularization and neovascularization of nanosized bioactive glass coated decellularized trabecular bone scaffolds. J Biomed Mater Res A. 2013;101:827–841. Wiley Online Library. doi:10.1002/jbm.a.34373
  • Shie M-Y, Ding S-J, Chang H-C. The role of silicon in osteoblast-like cell proliferation and apoptosis. Acta Biomater. 2011;7:2604–2614. Elsevier. doi:10.1016/j.actbio.2011.02.023
  • Walker D, Wood S, Southgate J, Holcombe M, Smallwood R. An integrated agent-mathematical model of the effect of intercellular signalling via the epidermal growth factor receptor on cell proliferation. J Theor Biol. 2006;242:774–789. Elsevier. doi:10.1016/j.jtbi.2006.04.020
  • Boyacioglu SO, Korkmaz M, Kahraman E, Yildirim H, Bora S, Ataman OY. Biological effects of tolerable level chronic boron intake on transcription factors. J Trace Elem Med Biol. 2017;39:30–35. Elsevier. doi:10.1016/j.jtemb.2016.06.009
  • Li J, Zhai D, Lv F, et al. Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing. Acta Biomater. 2016;36:254–266. Elsevier. doi:10.1016/j.actbio.2016.03.011
  • Milan PB, Khamseh S, Zarrintaj P, et al. Copper-enriched diamond-like carbon coatings promote regeneration at the bone–implant interface. Heliyon. 2020;6:e03798. Elsevier.
  • Stoor P, Frantzen J. Influence of bioactive glass S53P4 granules and putty on osteomyelitis associated bacteria in vitro. Biomed Glas. 2017;3:79–85. De Gruyter Open. doi:10.1515/bglass-2017-0007
  • Zhang D, Leppäranta O, Munukka E, et al. Antibacterial effects and dissolution behavior of six bioactive glasses. J Biomed Mater Res A. 2010;93:475–483. Wiley Online Library. doi:10.1002/jbm.a.32564
  • Kim -J-J, El-Fiqi A, Kim H-W. Synergetic cues of bioactive nanoparticles and nanofibrous structure in bone scaffolds to stimulate osteogenesis and angiogenesis. ACS Appl Mater Interfaces. 2017;9(3):2059–2073. doi:10.1021/acsami.6b12089
  • Zarrintaj P, Mahmodi G, Manouchehri S, et al. Zeolite in tissue engineering: opportunities and challenges. MedComm. 2020;1:5–34. Wiley Online Library. doi:10.1002/mco2.5
  • Liakouli V, Cipriani P, Di Benedetto P, et al. The role of extracellular matrix components in angiogenesis and fibrosis: possible implication for systemic sclerosis. Mod Rheumatol. 2018;28(6):922–932. doi:10.1080/14397595.2018.1431004
  • Zhang J, Liu X, Ma K, et al. Collagen/heparin scaffold combined with vascular endothelial growth factor promotes the repair of neurological function in rats with traumatic brain injury. Biomater Sci. 2021;9(3):745–764. doi:10.1039/C9BM01446B
  • Zhang B, Radisic M. Organ-Level Vascularization: The Mars Mission of Bioengineering. Elsevier; 2020.
  • Liu K, Chen C, Zhang H, Chen Y, Zhou S. Adipose stem cell derived exosomes in combination with hyaluronic acid accelerate wound healing through enhancing re epithelialization and vascularization. Br J Dermatol. 2019;181:854–856. doi:10.1111/bjd.17984
  • Bahramsoltani M, Slosarek I, De Spiegelaere W, Plendl J. Angiogenesis and collagen type IV expression in different endothelial cell culture systems. Anat Histol Embryol. 2014;43(2):103–115. Wiley Online Library. doi:10.1111/ahe.12052
  • Ehterami A, Salehi M, Farzamfar S, et al. A promising wound dressing based on alginate hydrogels containing vitamin D3 cross-linked by calcium carbonate/d-glucono- -lactone. Biomed Eng Lett. 2020;10:309. Springer. doi:10.1007/s13534-020-00155-8
  • Mohebbi S, Nezhad MN, Zarrintaj P, et al. Chitosan in biomedical engineering: a critical review. Curr Stem Cell Res Ther. 2019;14:93–116. Bentham Science Publishers.
  • Zhang W, Chen L, Chen J, et al. Silk fibroin biomaterial shows safe and effective wound healing in animal models and a randomized controlled clinical trial. Adv Healthcare Mater. 2017;6(10):1700121. doi:10.1002/adhm.201700121
  • Ribatti D, Nico B, Crivellato E. The role of pericytes in angiogenesis. Int J Dev Biol. 2011;55(3):261–268. doi:10.1387/ijdb.103167dr
  • Morgan JP, Delnero PF, Zheng Y, et al. Formation of microvascular networks in vitro. Nat Protoc. 2013;8:1820–1836. Nature Publishing Group. doi:10.1038/nprot.2013.110
  • Wang B, Lv X, Li Z, et al. Urethra-inspired biomimetic scaffold: a therapeutic strategy to promote angiogenesis for urethral regeneration in a rabbit model. Acta Biomater. 2020;102:247–258. Elsevier. doi:10.1016/j.actbio.2019.11.026
  • Sweeney SM, DiLullo G, Slater SJ, et al. Angiogenesis in collagen I requires 2 1 ligation of a GFP* GER sequence and possibly p38 MAPK activation and focal adhesion disassembly. J Biol Chem. 2003;278:30516–30524. ASBMB. doi:10.1074/jbc.M304237200
  • Schechner JS, Nath AK, Zheng L, et al. In vivo formation of complex microvessels lined by human endothelial cells in an immunodeficient mouse. Proc Natl Acad Sci. 2000;97:9191–9196. National Acad Sciences. doi:10.1073/pnas.150242297
  • Zhang S, Chen J, Yu Y, Dai K, Wang J, Liu C. Accelerated bone regenerative efficiency by regulating sequential release of BMP-2 and VEGF and synergism with sulfated chitosan. ACS Biomater Sci Eng. 2019;5(4):1944–1955. doi:10.1021/acsbiomaterials.8b01490
  • Campbell KT, Stilhano RS, Silva EA. Enzymatically degradable alginate hydrogel systems to deliver endothelial progenitor cells for potential revasculature applications. Biomaterials. 2018;179:109–121. Elsevier. doi:10.1016/j.biomaterials.2018.06.038
  • Mony MP, Shenoy SJ, Raj R, et al. Gelatin-modified cholecyst-derived Scaffold promotes angiogenesis and faster healing of diabetic wounds. ACS Applied Bio Mater. 2021;4(4):3320–3331. doi:10.1021/acsabm.0c01648
  • Anderson SM, Siegman SN, Segura T. The effect of vascular endothelial growth factor (VEGF) presentation within fibrin matrices on endothelial cell branching. Biomaterials. 2011;32:7432–7443. Elsevier. doi:10.1016/j.biomaterials.2011.06.027
  • Shi X, Zhou K, Huang F, Wang C. Interaction of hydroxyapatite nanoparticles with endothelial cells: internalization and inhibition of angiogenesis in vitro through the PI3K/Akt pathway. Int J Nanomedicine. 2017;12:5781. Dove Press. doi:10.2147/IJN.S140179
  • Aljohi A, Matou-Nasri S, Liu D, Al-Khafaji N, Slevin M, Ahmed N. Momordica charantia extracts protect against inhibition of endothelial angiogenesis by advanced glycation endproducts in vitro. Food Funct. 2018;9:5728–5739. Royal Society of Chemistry. doi:10.1039/C8FO00297E
  • Dohle E, El Bagdadi K, Sader R, Choukroun J, James Kirkpatrick C, Ghanaati S. Platelet rich fibrin based matrices to improve angiogenesis in an in vitro co culture model for bone tissue engineering. J Tissue Eng Regen Med. 2018;12:598–610. Wiley Online Library. doi:10.1002/term.2475
  • Uwamori H, Higuchi T, Arai K, Sudo R. Integration of neurogenesis and angiogenesis models for constructing a neurovascular tissue. Sci Rep. 2017;7:1–11. Nature Publishing Group. doi:10.1038/s41598-017-17411-0
  • Naderi H, Matin MM, Bahrami AR. Critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems. J Biomater Appl. 2011;26:383–417. Sage Publications Sage UK: London, England. doi:10.1177/0885328211408946
  • Mondrinos MJ, Koutzaki SH, Poblete HM, Crisanti MC, Lelkes PI, Finck CM. In vivo pulmonary tissue engineering: contribution of donor-derived endothelial cells to construct vascularization. Tissue Eng Part A. 2008;14:361–368. Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA. doi:10.1089/tea.2007.0041
  • Liu S, Yu J, Zhang Q, et al. Dual cross-linked HHA hydrogel supplies and regulates MΦ2 for synergistic improvement of immunocompromise and impaired angiogenesis to enhance diabetic chronic wound healing. Biomacromolecules. 2020;21(9):3795–3806. doi:10.1021/acs.biomac.0c00891
  • Grigoryan B, Paulsen SJ, Corbett DC, et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science. 2019;364:458–464. American Association for the Advancement of Science. doi:10.1126/science.aav9750
  • Van Hove AH, Burke K, Antonienko E, Brown E III, Benoit DSW. Enzymatically-responsive pro-angiogenic peptide-releasing poly (ethylene glycol) hydrogels promote vascularization in vivo. J Control Release. 2015;217:191–201. Elsevier. doi:10.1016/j.jconrel.2015.09.005
  • Mokhames Z, Rezaie Z, Ardeshirylajimi A, Basiri A, Taheri M, Omrani MD. VEGF-incorporated PVDF/collagen nanofibrous scaffold for bladder wall regeneration and angiogenesis. Int J Polym Mater Polym Biomater. 2021;70:521–529. Taylor & Francis. doi:10.1080/00914037.2020.1740985
  • Gao W, Jin W, Li Y, et al. A highly bioactive bone extracellular matrix-biomimetic nanofibrous system with rapid angiogenesis promotes diabetic wound healing. J Mater Chem B. 2017;5:7285–7296. Royal Society of Chemistry. doi:10.1039/C7TB01484H
  • Abebayehu D, Spence AJ, McClure MJ, Haque TT, Rivera KO, Ryan JJ. Polymer scaffold architecture is a key determinant in mast cell inflammatory and angiogenic responses. J Biomed Mater Res A. 2019;107:884–892. Wiley Online Library. doi:10.1002/jbm.a.36605
  • Gugutkov D, Gustavsson J, Cantini M, Salmeron sánchez M, Altankov G. Electrospun fibrinogen–PLA nanofibres for vascular tissue engineering. J Tissue Eng Regen Med. 2017;11:2774–2784. Wiley Online Library. doi:10.1002/term.2172
  • Klumpp D, Rudisile M, Kühnle RI, et al. Three dimensional vascularization of electrospun PCL/collagen blend nanofibrous scaffolds in vivo. J Biomed Mater Res A. 2012;100:2302–2311. Wiley Online Library. doi:10.1002/jbm.a.34172
  • Nazarnezhad S, Baino F, Kim H-W, Webster TJ, Kargozar S. Electrospun nanofibers for improved angiogenesis: promises for tissue engineering applications. Nanomaterials. 2020;10:1609. Multidisciplinary Digital Publishing Institute. doi:10.3390/nano10081609
  • Cui L, Liang J, Liu H, Zhang K, Li J. Nanomaterials for angiogenesis in skin tissue engineering. Tissue Eng Part B Rev. 2020;26(3):203–216. doi:10.1089/ten.teb.2019.0337
  • Levenberg S, Rouwkema J, Macdonald M, et al. Engineering vascularized skeletal muscle tissue. Nat Biotechnol. 2005;23:879–884. Nature Publishing Group. doi:10.1038/nbt1109
  • Thevenot PT, Nair AM, Shen J, Lotfi P, Ko C-Y, Tang L. The effect of incorporation of SDF-1 into PLGA scaffolds on stem cell recruitment and the inflammatory response. Biomaterials. 2010;31:3997–4008. Elsevier. doi:10.1016/j.biomaterials.2010.01.144
  • Hoenig MR, Bianchi C, Sellke FW. Hypoxia inducible factor-1, endothelial progenitor cells, monocytes, cardiovascular risk, wound healing, cobalt and hydralazine: a unifying hypothesis. Curr Drug Targets. 2008;9:422–435. Bentham Science Publishers. doi:10.2174/138945008784221215
  • Dong D, Li J, Cui M, et al. In situ “clickable” zwitterionic starch-based hydrogel for 3D cell encapsulation. ACS Appl Mater Interfaces. 2016;8(7):4442–4455. doi:10.1021/acsami.5b12141
  • Tremblay PL, Hudon V, Berthod F, Germain L, Auger FA. Inosculation of tissue engineered capillaries with the host’s vasculature in a reconstructed skin transplanted on mice. Am J Transpl. 2005;5:1002–1010. Wiley Online Library. doi:10.1111/j.1600-6143.2005.00790.x
  • Zarrintaj P, Zangene E, Manouchehri S, et al. Conductive biomaterials as nerve conduits: recent advances and future challenges. Appl Mater Today. 2020;20:100784. Elsevier. doi:10.1016/j.apmt.2020.100784
  • Kito T, Shibata R, Ishii M, et al. iPS cell sheets created by a novel magnetite tissue engineering method for reparative angiogenesis. Sci Rep. 2013;3:1–8. Nature Publishing Group. doi:10.1038/srep01418
  • Divakar P, Caruso I, Moodie KL, Theiler RN, Hoopes PJ, Wegst UGK. Design, manufacture, and in vivo testing of a tissue scaffold for permanent female sterilization by tubal occlusion. MRS Adv. 2018;3:1685–1690. Materials Research Society. doi:10.1557/adv.2018.57
  • Gorustovich AA, Roether JA, Boccaccini AR. Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences. Tissue Eng Part B Rev. 2010;16:199–207. Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA. doi:10.1089/ten.teb.2009.0416
  • Maghsoudlou P, Georgiades F, Tyraskis A, et al. Preservation of micro-architecture and angiogenic potential in a pulmonary acellular matrix obtained using intermittent intra-tracheal flow of detergent enzymatic treatment. Biomaterials. 2013;34:6638–6648. Elsevier. doi:10.1016/j.biomaterials.2013.05.015
  • Hussein KH, Park K-M, Yu L, Song S-H, Woo H-M, Kwak -H-H. Vascular reconstruction: a major challenge in developing a functional whole solid organ graft from decellularized organs. Acta Biomater. 2020;103:68–80. Elsevier. doi:10.1016/j.actbio.2019.12.029
  • Merckx G, Tay H, Lo Monaco M, et al. Chorioallantoic membrane assay as model for angiogenesis in tissue engineering: focus on stem cells. Tissue Eng Part B Rev. 2020;26:519–539. Mary Ann Liebert, Inc. publishers 140 Huguenot Street, 3rd Floor New. doi:10.1089/ten.teb.2020.0048
  • Gilpin SE, Wagner DE. Acellular human lung scaffolds to model lung disease and tissue regeneration. Eur Respir Rev. 2018;27:180021. Eur Respiratory Soc. doi:10.1183/16000617.0021-2018
  • Kato Y, Iwata T, Morikawa S, Yamato M, Okano T, Uchigata Y. Allogeneic transplantation of an adipose-derived stem cell sheet combined with artificial skin accelerates wound healing in a rat wound model of type 2 diabetes and obesity. Diabetes. 2015;64:2723–2734. Am Diabetes Assoc. doi:10.2337/db14-1133
  • Auger FA, Gibot L, Lacroix D. The pivotal role of vascularization in tissue engineering. Annu Rev Biomed Eng. 2013;15:177–200. Annual Reviews. doi:10.1146/annurev-bioeng-071812-152428
  • Chen L, Xing Q, Zhai Q, et al. Pre-vascularization enhances therapeutic effects of human mesenchymal stem cell sheets in full thickness skin wound repair. Theranostics. 2017;7:117. Ivyspring International Publisher. doi:10.7150/thno.17031
  • Dickman CTD, Russo V, Thain K, et al. Functional characterization of 3D contractile smooth muscle tissues generated using a unique microfluidic 3D bioprinting Technology. FASEB J. 2020;34:1652–1664. Wiley Online Library. doi:10.1096/fj.201901063RR
  • Ren X, Moser PT, Gilpin SE, et al. Engineering pulmonary vasculature in decellularized rat and human lungs. Nat Biotechnol. 2015;33:1097–1102. Nature Publishing Group. doi:10.1038/nbt.3354
  • Zarrintaj P, Moghaddam AS, Manouchehri S, et al. Can regenerative medicine and nanotechnology combine to heal wounds? The search for the ideal wound dressing. Nanomedicine. 2017;12:2403–2422. Future Medicine. doi:10.2217/nnm-2017-0173
  • Nilforoushzadeh MA, Khodadadi Yazdi M, Baradaran Ghavami S, et al. Mesenchymal stem cell spheroids embedded in an injectable thermosensitive hydrogel: an in situ drug formation platform for accelerated wound healing. ACS Biomater Sci Eng. 2020;6:5096–5109. ACS Publications. doi:10.1021/acsbiomaterials.0c00988
  • Li T, Ma H, Ma H, et al. Mussel-inspired nanostructures potentiate the immunomodulatory properties and angiogenesis of mesenchymal stem cells. ACS Appl Mater Interfaces. 2019;11(19):17134–17146. doi:10.1021/acsami.8b22017
  • White AC, Lavine KJ, Ornitz DM. FGF9 and SHH Regulate Mesenchymal Vegfa Expression and Development of the Pulmonary Capillary Network. Oxford University Press for The Company of Biologists Limited; 2007.
  • Genova T, Petrillo S, Zicola E, et al. The crosstalk between osteodifferentiating stem cells and endothelial cells promotes angiogenesis and bone formation. Front Physiol. 2019;10:1291. Frontiers. doi:10.3389/fphys.2019.01291
  • McFadden TM, Duffy GP, Allen AB, et al. The delayed addition of human mesenchymal stem cells to pre-formed endothelial cell networks results in functional vascularization of a collagen–glycosaminoglycan scaffold in vivo. Acta Biomater. 2013;9:9303–9316. Elsevier. doi:10.1016/j.actbio.2013.08.014
  • Mura M, Binnie M, Han B, et al. Functions of type II pneumocyte-derived vascular endothelial growth factor in alveolar structure, acute inflammation, and vascular permeability. Am J Pathol. 2010;176:1725–1734. Elsevier. doi:10.2353/ajpath.2010.090209
  • Panina YA, Yakimov AS, Komleva YK, et al. Plasticity of adipose tissue-derived stem cells and regulation of angiogenesis. Front Physiol. 2018;9:1656. Frontiers. doi:10.3389/fphys.2018.01656
  • Ling T-Y, Liu Y-L, Huang Y-K, et al. Differentiation of lung stem/progenitor cells into alveolar pneumocytes and induction of angiogenesis within a 3D gelatin–microbubble scaffold. Biomaterials. 2014;35:5660–5669. Elsevier. doi:10.1016/j.biomaterials.2014.03.074
  • Spiller KL, Anfang RR, Spiller KJ, et al. The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials. 2014;35(15):4477–4488. doi:10.1016/j.biomaterials.2014.02.012
  • Danese S, Dejana E, Fiocchi C. Immune regulation by microvascular endothelial cells: directing innate and adaptive immunity, coagulation, and inflammation. J Immunol. 2007;178:6017–6022. Am Assoc Immnol. doi:10.4049/jimmunol.178.10.6017
  • Noonan DM, Barbaro ADL, Vannini N, Mortara L, Albini A. Inflammation, inflammatory cells and angiogenesis: decisions and indecisions. Cancer Metastasis Rev. 2008;27:31–40. Springer. doi:10.1007/s10555-007-9108-5
  • Wagner EM, Sánchez J, McClintock JY, Jenkins J, Moldobaeva A. Inflammation and ischemia-induced lung angiogenesis. Am J Physiol Lung Cell Mol Physiol. 2008;294:L351–L357. American Physiological Society. doi:10.1152/ajplung.00369.2007
  • Laschke MW, Menger MD. Spheroids as vascularization units: from angiogenesis research to tissue engineering applications. Biotechnol Adv. 2017;35:782–791. Elsevier. doi:10.1016/j.biotechadv.2017.07.002
  • Zimmermann JA, Mcdevitt TC. Pre-conditioning mesenchymal stromal cell spheroids for immunomodulatory paracrine factor secretion. Cytotherapy. 2014;16(3):331–345. doi:10.1016/j.jcyt.2013.09.004
  • Lee E, Takahashi H, Pauty J, et al. A 3D in vitro pericyte-supported microvessel model: visualisation and quantitative characterisation of multistep angiogenesis. J Mater Chem B. 2018;6:1085–1094. Royal Society of Chemistry. doi:10.1039/C7TB03239K
  • Grönman M, Moisio O, Li X-G, et al. Association between [68Ga] NODAGA-RGDyK uptake and dynamics of angiogenesis in a human cell-based 3D model. Mol Biol Rep. 2021;48(6):5347–5353. Springer.
  • Komaki M, Numata Y, Morioka C, et al. Exosomes of human placenta-derived mesenchymal stem cells stimulate angiogenesis. Stem Cell Res Ther. 2017;8:1–12. BioMed Central. doi:10.1186/s13287-017-0660-9
  • Heise RL, Stober V, Cheluvaraju C, Hollingsworth JW, Garantziotis S. Mechanical stretch induces epithelial-mesenchymal transition in alveolar epithelia via hyaluronan activation of innate immunity. J Biol Chem. 2011;286:17435–17444. ASBMB. doi:10.1074/jbc.M110.137273
  • Milkiewicz M, Doyle JL, Fudalewski T, Ispanovic E, Aghasi M, Haas TL. HIF 1 and HIF 2 play a central role in stretch induced but not shear stress induced angiogenesis in rat skeletal muscle. J Physiol. 2007;583:753–766. Wiley Online Library. doi:10.1113/jphysiol.2007.136325
  • Ohata K, Ott HC. Human-scale lung regeneration based on decellularized matrix scaffolds as a biologic platform. Surg Today. 2020;50:633–643. Springer. doi:10.1007/s00595-020-02000-y
  • Varley C, Hill G, Pellegrin S, et al. Autocrine regulation of human urothelial cell proliferation and migration during regenerative responses in vitro. Exp Cell Res. 2005;306:216–229. Elsevier. doi:10.1016/j.yexcr.2005.02.004
  • Nossa R, Costa J, Cacopardo L, Ahluwalia A. Breathing in vitro: designs and applications of engineered lung models. J Tissue Eng. 2021;12:20417314211008696. doi:10.1177/20417314211008696
  • Fuchs S, Motta A, Migliaresi C, Kirkpatrick CJ. Outgrowth endothelial cells isolated and expanded from human peripheral blood progenitor cells as a potential source of autologous cells for endothelialization of silk fibroin biomaterials. Biomaterials. 2006;27(31):5399–5408. doi:10.1016/j.biomaterials.2006.06.015
  • Bruzauskaite I, Raudoniute J, Denkovskij J, et al. Native matrix-based human lung alveolar tissue model in vitro: studies of the reparatory actions of mesenchymal stem cells. Cytotechnology. 2017;69(1):1–17. doi:10.1007/s10616-016-0021-z
  • Ma J, Both SK, Yang F, et al. Concise review: cell‐based strategies in bone tissue engineering and regenerative medicine. Stem Cells Transl Med. 2014;3(1):98–107. doi:10.5966/sctm.2013-0126
  • Iravani S, Varma RS. Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots. A review. Environ Chem Lett. 2020;1–25. doi:10.1007/s10311-020-00984-0
  • Graney PL, Ben-Shaul S, Landau S, et al. Macrophages of diverse phenotypes drive vascularization of engineered tissues. Sci Adv. 2020;6:eaay6391. American Association for the Advancement of Science. doi:10.1126/sciadv.aay6391
  • de Hilster RHJ, Sharma PK, Jonker MR, et al. Human lung extracellular matrix hydrogels resemble the stiffness and viscoelasticity of native lung tissue. Am J Physiol Lung Cell Mol Physiol. 2020;318:L698–L704. American Physiological Society Bethesda, MD. doi:10.1152/ajplung.00451.2019
  • Campillo N, Jorba I, Schaedel L, et al. A novel chip for cyclic stretch and intermittent hypoxia cell exposures mimicking obstructive sleep apnea. Front Physiol. 2016;7:319. Frontiers. doi:10.3389/fphys.2016.00319
  • Da Palma RK, Nonaka PN, Campillo N, et al. Behavior of vascular resistance undergoing various pressure insufflation and perfusion on decellularized lungs. J Biomech. 2016;49:1230–1232. Elsevier. doi:10.1016/j.jbiomech.2016.02.043
  • Linville RM, Boland NF, Covarrubias G, Price GM, Tien J. Physical and chemical signals that promote vascularization of capillary-scale channels. Cell Mol Bioeng. 2016;9:73–84. Springer. doi:10.1007/s12195-016-0429-8
  • Senger D, Davis G. Angiogenesis. Cold Spring Harb Perspect Biol. 2011;3(8):a005090. doi:10.1101/cshperspect.a005090
  • Bramfeld H, Sabra G, Centis V, Vermette P. Scaffold vascularization: a challenge for three-dimensional tissue engineering. Curr Med Chem. 2010;17:3944–3967. Bentham Science Publishers. doi:10.2174/092986710793205327
  • Buchanan CF, Verbridge SS, Vlachos PP, Rylander MN. Flow shear stress regulates endothelial barrier function and expression of angiogenic factors in a 3D microfluidic tumor vascular model. Cell Adh Migr. 2014;8:517–524. Taylor & Francis. doi:10.4161/19336918.2014.970001
  • Gladman SJ, Ward RE, Michael-Titus AT, Knight MM, Priestley JV. The effect of mechanical strain or hypoxia on cell death in subpopulations of rat dorsal root ganglion neurons in vitro. Neuroscience. 2010;171:577–587. Elsevier. doi:10.1016/j.neuroscience.2010.07.009
  • Liang X, Huang X, Zhou Y, Jin R, Li Q. Mechanical stretching promotes skin tissue regeneration via enhancing mesenchymal stem cell homing and transdifferentiation. Stem Cells Transl Med. 2016;5:960–969. Wiley Online Library. doi:10.5966/sctm.2015-0274
  • Zhao J, Nishimura Y, Kimura A, et al. Chemokines protect vascular smooth muscle cells from cell death induced by cyclic mechanical stretch. Sci Rep. 2017;7(1):1–9. doi:10.1038/s41598-016-0028-x
  • Ott HC, Clippinger B, Conrad C, et al. Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med. 2010;16:927–933. Nature Publishing Group. doi:10.1038/nm.2193
  • Kang Y, Chang J. Channels in a porous scaffold: a new player for vascularization. Regen Med. 2018;13:705–715. Future Medicine. doi:10.2217/rme-2018-0022
  • Perng C-K, Wang Y-J, Tsi C-H, Ma H. In vivo angiogenesis effect of porous collagen scaffold with hyaluronic acid oligosaccharides. J Surg Res. 2011;168:9–15. Elsevier. doi:10.1016/j.jss.2009.09.052
  • Mehdizadeh H, Bayrak ES, Lu C, et al. Agent-based modeling of porous scaffold degradation and vascularization: optimal scaffold design based on architecture and degradation dynamics. Acta Biomater. 2015;27:167–178. Elsevier. doi:10.1016/j.actbio.2015.09.011
  • Graham HK, McConnell JC, Limbert G, Sherratt MJ. How stiff is skin? Exp Dermatol. 2019;28:4–9. doi:10.1111/exd.13826
  • Handorf AM, Zhou Y, Halanski MA, Li W-J. Tissue stiffness dictates development, homeostasis, and disease progression. Organogenesis. 2015;11(1):1–15. doi:10.1080/15476278.2015.1019687
  • Murphy MC, Huston III, Jack J Jr, et al. Measuring the characteristic topography of brain stiffness with magnetic resonance elastography. PLoS One. 2013;8(12):e81668. doi:10.1371/journal.pone.0081668
  • Liu L, You Z, Yu H, et al. Mechanotransduction-modulated fibrotic microniches reveal the contribution of angiogenesis in liver fibrosis. Nat Mater. 2017;16:1252–1261. Nature Publishing Group. doi:10.1038/nmat5024
  • Ren Y, Zhan Q, Hu Q, Sun B, Yang C, Wang C. Static stretch induces active morphological remodeling and functional impairment of alveolar epithelial cells. Respiration. 2009;78:301–311. Karger Publishers. doi:10.1159/000207632
  • Stabler CT, Caires L Jr, Mondrinos C, et al. Enhanced re-endothelialization of decellularized rat lungs. Tissue Eng Part C Methods. 2016;22:439–450. Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA. doi:10.1089/ten.tec.2016.0012
  • Ruehle MA, Eastburn EA, LaBelle SA, et al. Extracellular matrix compression temporally regulates microvascular angiogenesis. Sci Adv. 2020;6:eabb6351. American Association for the Advancement of Science. doi:10.1126/sciadv.abb6351
  • Hauser S, Jung F, Pietzsch J. Human endothelial cell models in biomaterial research. Trends Biotechnol. 2017;35(3):265–277. doi:10.1016/j.tibtech.2016.09.007
  • Narayan D, Venkatraman SS. Effect of pore size and interpore distance on endothelial cell growth on polymers. J Biomed Mater Res A. 2008;87:710–718. Wiley Online Library. doi:10.1002/jbm.a.31749
  • Narmoneva DA, Oni O, Sieminski AL, et al. Self-assembling short oligopeptides and the promotion of angiogenesis. Biomaterials. 2005;26:4837–4846. Elsevier. doi:10.1016/j.biomaterials.2005.01.005
  • Mirabella T, MacArthur JW, Cheng D, et al. 3D-printed vascular networks direct therapeutic angiogenesis in ischaemia. Nat Biomed Eng. 2017;1:1–8. Nature Publishing Group. doi:10.1038/s41551-017-0083
  • Sart S, Agathos SN, Li Y. Engineering stem cell fate with biochemical and biomechanical properties of microcarriers. Biotechnol Prog. 2013;29:1354–1366. Wiley Online Library. doi:10.1002/btpr.1825
  • Edgar L, Pu T, Porter B, et al. Regenerative medicine, organ bioengineering and transplantation. J Br Surg. 2020;107:793–800. Oxford University Press. doi:10.1002/bjs.11686
  • Narayan R, Agarwal T, Mishra D, Maiti TK, Mohanty S. Goat tendon collagen-human fibrin hydrogel for comprehensive parametric evaluation of HUVEC microtissue-based angiogenesis. Colloids Surf B Biointerfaces. 2018;163:291–300. doi:10.1016/j.colsurfb.2017.12.056
  • Mammoto A, Connor KM, Mammoto T, et al. A mechanosensitive transcriptional mechanism that controls angiogenesis. Nature. 2009;457(7233):1103–1108. doi:10.1038/nature07765
  • Xiao X, Wang W, Liu D, et al. The promotion of angiogenesis induced by three-dimensional porous beta-tricalcium phosphate scaffold with different interconnection sizes via activation of PI3K/Akt pathways. Sci Rep. 2015;5:1–11. Nature Publishing Group.
  • Lee J-H, Parthiban P, Jin G-Z, Knowles JC, Kim H-W. Materials roles for promoting angiogenesis in tissue regeneration. Prog Mater Sci. 2021;117:100732.
  • Deveci D, Marshall JM, Egginton S. Relationship between capillary angiogenesis, fiber type, and fiber size in chronic systemic hypoxia. Am J Physiol Heart Circ Physiol. 2001;281(1):H241–H252. doi:10.1152/ajpheart.2001.281.1.H241
  • Gorodnova N, Kolobov A, Mynbaev O, Simakov S. Mathematical modeling of blood flow alteration in microcirculatory network due to angiogenesis. Lobachevskii J Math. 2016;37(5):541–549. doi:10.1134/S199508021605005X
  • Ueda A, Koga M, Ikeda M, Kudo S, Tanishita K. Effect of shear stress on microvessel network formation of endothelial cells with in vitro three-dimensional model. Am J Physiol Heart Circ Physiol. 2004;287:H994–H1002. American Physiological Society. doi:10.1152/ajpheart.00400.2003
  • Nauli SM, Kawanabe Y, Kaminski JJ, Pearce WJ, Ingber DE, Zhou J. Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation. 2008;117(9):1161–1171. doi:10.1161/CIRCULATIONAHA.107.710111