1,731
Views
12
CrossRef citations to date
0
Altmetric
Review

How Advancing are Mesoporous Silica Nanoparticles? A Comprehensive Review of the Literature

, , , & ORCID Icon
Pages 1803-1827 | Published online: 22 Apr 2022

References

  • Mostafavi E, Soltantabar P, Webster TJ. Nanotechnology and picotechnology: a new arena for translational medicine. In: Biomaterials in Translational Medicine. Elsevier; 2019:191–212.
  • Medina-Cruz D, Mostafavi E, Vernet-Crua A, et al. Green nanotechnology-based drug delivery systems for osteogenic disorders. Expert Opin Drug Deliv. 2020;17(3):341–356. doi:10.1080/17425247.2020.1727441
  • Mostafavi E, Medina-Cruz D, Kalantari K, Taymoori A, Soltantabar P, Webster TJ. Electroconductive nanobiomaterials for tissue engineering and regenerative medicine. Bioelectricity. 2020;2(2):120–149. doi:10.1089/bioe.2020.0021
  • Zare H, Ahmadi S, Ghasemi A, et al. Carbon nanotubes: smart drug/gene delivery carriers. Int J Nanomedicine. 2021;16:1681–1706. doi:10.2147/IJN.S299448
  • Mostafavi E, Zarepour A, Barabadi H, Zarrabi A, Truong LB, Medina-Cruz D. Antineoplastic activity of biogenic silver and gold nanoparticles to combat leukemia: beginning a new era in cancer theragnostic. Biotechnol Rep. 2022;34:e00714. doi:10.1016/j.btre.2022.e00714
  • Chenthamara D, Subramaniam S, Ramakrishnan SG, et al. Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res. 2019;23(1):1–29. doi:10.1186/s40824-018-0153-7
  • Yoo J, Park C, Yi G, Lee D, Koo H. Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers. 2019;11(5):640. doi:10.3390/cancers11050640
  • Amani H, Mostafavi E, Alebouyeh MR, et al. Would colloidal gold nanocarriers present an effective diagnosis or treatment for ischemic stroke? Int J Nanomedicine. 2019;14:8013–8031. doi:10.2147/IJN.S210035
  • Virlan M, Miricescu D, Radulescu R, et al. Organic nanomaterials and their applications in the treatment of oral diseases. Molecules. 2016;21(2):207. doi:10.3390/molecules21020207
  • Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017;9(2):12. doi:10.3390/pharmaceutics9020012
  • Beltrán-Gracia E, López-Camacho A, Higuera-Ciapara I, Velázquez-Fernández JB, Vallejo-Cardona AA. Nanomedicine review: clinical developments in liposomal applications. Cancer Nanotechnol. 2019;10(1):1–40. doi:10.1186/s12645-019-0055-y
  • Jafari S, Derakhshankhah H, Alaei L, Fattahi A, Varnamkhasti BS, Saboury AA. Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomed Pharmacother. 2019;109:1100–1111. doi:10.1016/j.biopha.2018.10.167
  • Bharti C, Nagaich U, Pal AK, Gulati N. Mesoporous silica nanoparticles in target drug delivery system: a review. Int J Pharm Investig. 2015;5(3):124. doi:10.4103/2230-973X.160844
  • Castillo RR, Lozano D, Vallet-Regí M. Mesoporous silica nanoparticles as carriers for therapeutic biomolecules. Pharmaceutics. 2020;12(5):432. doi:10.3390/pharmaceutics12050432
  • Porrang S, Rahemi N, Davaran S, Mahdavi M, Hassanzadeh B. Preparation and in-vitro evaluation of mesoporous biogenic silica nanoparticles obtained from rice and wheat husk as a biocompatible carrier for anti-cancer drug delivery. Eur J Pharm Sci. 2021;105866. doi:10.1016/j.ejps.2021.105866
  • Naqvi J, Shah F, Mansha M. Extraction of amorphous silica from wheat husk by using KMnO4. J Faculty Eng Technol. 2011;18(1):39–46.
  • Kavaz D, Vaseashta A, Vaseashta A. Synthesizing nano silica nanoparticles from barley grain waste: effect of temperature on mechanical properties. Polish J Environ Stud. 2019;28(4):2513–2521. doi:10.15244/pjoes/91078
  • Okoronkwo E, Imoisili P, Olusunle S. Extraction and characterization of amorphous silica from corn cob ash by sol-gel-method. Chem Mater Res. 2013;3(4):68–72.
  • Sholeh M, Rochmadi R, Sulistyo H, Budhijanto B. Nanostructured silica from bagasse ash: the effect of synthesis temperature and pH on its properties. J Sol Gel Sci Technol. 2021;97(1):126–137. doi:10.1007/s10971-020-05416-7
  • Awal AA, Hussin MW. The effectiveness of palm oil fuel ash in preventing expansion due to alkali-silica reaction. Cement Concrete Composit. 1997;19(4):367–372. doi:10.1016/S0958-9465(97)00034-6
  • Heuer-Jungemann A, Feliu N, Bakaimi I, et al. The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem Rev. 2019;119(8):4819–4880. doi:10.1021/acs.chemrev.8b00733
  • El Moussawi A, Endres T, Peukert S, et al. Multi-line SiO fluorescence imaging in the flame synthesis of silica nanoparticles from SiCl4. Combust Flame. 2021;224:260–272. doi:10.1016/j.combustflame.2020.12.020
  • Cheraghian G, Wistuba MP. Effect of Fumed silica nanoparticles on ultraviolet aging resistance of bitumen. Nanomaterials. 2021;11(2):454. doi:10.3390/nano11020454
  • Chen Y, Sepahvand S, Gauvin F, Schollbach K, Brouwers H, Yu Q. One-pot synthesis of monolithic silica-cellulose aerogel applying a sustainable sodium silicate precursor. Constr Build Mater. 2021;293:123289. doi:10.1016/j.conbuildmat.2021.123289
  • Stopic S, Dertmann C, Koiwa I, et al. Synthesis of nanosilica via olivine mineral carbonation under high pressure in an autoclave. Metals. 2019;9(6):708. doi:10.3390/met9060708
  • Porrang S, Rahemi N, Davaran S, Mahdavi M, Hassanzadeh B. Synthesis of temperature/pH dual-responsive mesoporous silica nanoparticles by surface modification and radical polymerization for anti-cancer drug delivery. Colloids Surf a Physicochem Eng Asp. 2021;623:126719. doi:10.1016/j.colsurfa.2021.126719
  • Porrang S, Rahemi N, Davaran S, Mahdavi M, Hassanzadeh B, Gholipour AM. Direct surface modification of mesoporous silica nanoparticles by DBD plasma as a green approach to prepare dual-responsive drug delivery system. J Taiwan Inst Chem Eng. 2021;123:47–58. doi:10.1016/j.jtice.2021.05.024
  • Alam Q, Hendrix Y, Thijs L, Lazaro A, Schollbach K, Brouwers H. Novel low temperature synthesis of sodium silicate and ordered mesoporous silica from incineration bottom ash. J Clean Prod. 2019;211:874–883. doi:10.1016/j.jclepro.2018.11.173
  • Lazaro A, Quercia G, Brouwers H, Geus J. Synthesis of a green nano-silica material using beneficiated waste dunites and its application in concrete. World J Nano Sci Eng. 2013;2013. doi:10.4236/wjnse.2013.33006
  • Tong KT, Vinai R, Soutsos MN. Use of Vietnamese rice husk ash for the production of sodium silicate as the activator for alkali-activated binders. J Clean Prod. 2018;201:272–286. doi:10.1016/j.jclepro.2018.08.025
  • Bryant R, Proctor A, Hawkridge M, et al. Genetic variation and association mapping of silica concentration in rice hulls using a germplasm collection. Genetica. 2011;139(11–12):1383–1398. doi:10.1007/s10709-012-9637-x
  • Patel B, Patel P. Synthesis and characterization of silica nano-particles by acid leaching technique. Res J Chem Sci. 2014;4:52–55.
  • Chen Y. Design, Synthesis, Multifunctionalization and Biomedical Applications of Multifunctional Mesoporous Silica-Based Drug Delivery Nanosystems. Springer; 2016.
  • Issa AA, Luyt AS. Kinetics of alkoxysilanes and organoalkoxysilanes polymerization: a review. Polymers. 2019;11(3):537. doi:10.3390/polym11030537
  • Hao N, Chen X, Jayawardana KW, Wu B, Sundhoro M, Yan M. Shape control of mesoporous silica nanomaterials templated with dual cationic surfactants and their antibacterial activities. Biomater Sci. 2016;4(1):87–91. doi:10.1039/C5BM00197H
  • Froyen T, Geysmans N, Vounckx U, Hardy A. Multilamellar mesoporous silica nanoparticles using a cationic co-surfactant dual-templating method. bioRxiv. 2021. doi:10.1101/2021.02.25.432869
  • Guo Q-Y, Yan X-Y, Zhang W, et al. Ordered mesoporous silica pyrolyzed from single-source self-assembled organic–inorganic giant surfactants. J Am Chem Soc. 2021;143:12935–12942. doi:10.1021/jacs.1c05356
  • Tang F, Li L, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater. 2012;24(12):1504–1534. doi:10.1002/adma.201104763
  • Li J, Shen S, Kong F, Jiang T, Tang C, Yin C. Effects of pore size on in vitro and in vivo anticancer efficacies of mesoporous silica nanoparticles. RSC Adv. 2018;8(43):24633–24640. doi:10.1039/C8RA03914C
  • Wu S-H, Mou C-Y, Lin H-P. Synthesis of mesoporous silica nanoparticles. Chem Soc Rev. 2013;42(9):3862–3875. doi:10.1039/c3cs35405a
  • Li P, Li T, Ishiguro M, Su Y. Comparison of same carbon chain length cationic and anionic surfactant adsorption on silica. Coll Interfaces. 2020;4(3):34. doi:10.3390/colloids4030034
  • Qiao Z-A, Zhang L, Guo M, Liu Y, Huo Q. Synthesis of mesoporous silica nanoparticles via controlled hydrolysis and condensation of silicon alkoxide. Chem Mater. 2009;21(16):3823–3829. doi:10.1021/cm901335k
  • Lu F, Wu SH, Hung Y, Mou CY. Size effect on cell uptake in well‐suspended, uniform mesoporous silica nanoparticles. Small. 2009;5(12):1408–1413. doi:10.1002/smll.200900005
  • Zainala NA, Shukor SRA, Wabb HAA, Razakb K. Study on the effect of synthesis parameters of silica nanoparticles entrapped with rifampicin. Chem Eng. 2013;32. doi:10.3303/CET1332375
  • Dabbaghian M, Babalou A, Hadi P, Jannatdoust E. A parametric study of the synthesis of silica nanoparticles via sol-gel precipitation method. Int J Nanosci Nanotechnol. 2010;6(2):104–113.
  • Li C, Qi N, Liu Z, Zhou B, Chen Z, Wang Z. Effect of synthesis temperature on the ordered pore structure in mesoporous silica studied by positron annihilation spectroscopy. Appl Surf Sci. 2016;363:445–450. doi:10.1016/j.apsusc.2015.12.055
  • Yildirim A, Demirel GB, Erdem R, Senturk B, Tekinay T, Bayindir M. Pluronic polymer capped biocompatible mesoporous silica nanocarriers. Chem Commun. 2013;49(84):9782–9784. doi:10.1039/c3cc45967e
  • Yu J, Qiu H, Yin S, Wang H, Li Y. Polymeric drug delivery system based on pluronics for cancer treatment. Molecules. 2021;26(12):3610. doi:10.3390/molecules26123610
  • Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99:28–51. doi:10.1016/j.addr.2015.09.012
  • Yang C, Shi Z, Feng C, et al. An adjustable ph‐responsive drug delivery system based on self‐assembly polypeptide‐modified mesoporous silica. Macromol Biosci. 2020;20(6):2000034. doi:10.1002/mabi.202000034
  • Narayan R, Nayak UY, Raichur AM, Garg S. Mesoporous silica nanoparticles: a comprehensive review on synthesis and recent advances. Pharmaceutics. 2018;10(3):118. doi:10.3390/pharmaceutics10030118
  • Knežević NŽ, Durand J-O. Large pore mesoporous silica nanomaterials for application in delivery of biomolecules. Nanoscale. 2015;7(6):2199–2209. doi:10.1039/C4NR06114D
  • Möller K, Bein T. Talented mesoporous silica nanoparticles. Chem Mater. 2017;29(1):371–388. doi:10.1021/acs.chemmater.6b03629
  • Liu H-J, Xu P. Smart mesoporous silica nanoparticles for protein delivery. Nanomaterials. 2019;9(4):511. doi:10.3390/nano9040511
  • Salavati-Niasari M, Javidi J, Dadkhah M. Ball milling synthesis of silica nanoparticle from rice husk ash for drug delivery application. Comb Chem High Throughput Screen. 2013;16(6):458–462. doi:10.2174/1386207311316060006
  • San NO, Kurşungöz C, Tümtaş Y, Yaşa Ö, Ortac B, Tekinay T. Novel one-step synthesis of silica nanoparticles from sugarbeet bagasse by laser ablation and their effects on the growth of freshwater algae culture. Particuology. 2014;17:29–35. doi:10.1016/j.partic.2013.11.003
  • Jang HT, Park Y, Ko YS, Lee JY, Margandan B. Highly siliceous MCM-48 from rice husk ash for CO2 adsorption. Int J Greenhouse Gas Cont. 2009;3(5):545–549. doi:10.1016/j.ijggc.2009.02.008
  • Shen J, Liu X, Zhu S, Zhang H, Tan J. Effects of calcination parameters on the silica phase of original and leached rice husk ash. Mater Lett. 2011;65(8):1179–1183. doi:10.1016/j.matlet.2011.01.034
  • Wang W, Martin JC, Zhang N, Ma C, Han A, Sun L. Harvesting silica nanoparticles from rice husks. J Nanopart Res. 2011;13(12):6981–6990. doi:10.1007/s11051-011-0609-3
  • Zemnukhova L, Egorov A, Fedorishcheva G, Barinov N, Sokol’nitskaya T, Botsul A. Properties of amorphous silica produced from rice and oat processing waste. Inorgan Mater. 2006;42(1):24–29. doi:10.1134/S0020168506010067
  • Ali M, Haq EU, Karim MRA, et al. Effect of leaching with 5–6 N H2SO4 on thermal kinetics of rice husk during pure silica recovery. J Adv Res. 2016;7(1):47–51. doi:10.1016/j.jare.2015.01.007
  • Bakar RA, Yahya R, Gan SN. Production of high purity amorphous silica from rice husk. Procedia Chem. 2016;19:189–195. doi:10.1016/j.proche.2016.03.092
  • Hincapié-Rojas DF, Pineda-Gomez P, Rosales-Rivera A. Synthesis and characterisation of submicron silica particles from rice husk. Green Mater. 2018;6(1):15–22. doi:10.1680/jgrma.17.00019
  • Todkar BS, Deorukhkar OA, Deshmukh SM. Extraction of silica from rice husk. Int J Eng Res Dev. 2016;12(3):69–74.
  • Umeda J, Kondoh K, Michiura Y. Process parameters optimization in preparing high-purity amorphous silica originated from rice husks. Mater Transact. 2007;48(12):3095–3100. doi:10.2320/matertrans.MK200715
  • Chandrasekhar S, Pramada P, Praveen L. Effect of organic acid treatment on the properties of rice husk silica. J Mater Sci. 2005;40(24):6535–6544. doi:10.1007/s10853-005-1816-z
  • Oyawale, FA, Makinde OW, Ogundele KT. Effect of oxalic acid on rice husk. Int J Appl Sci Eng Res. 2012;1(5):663–668. doi:10.6088/ijaser.0020101067
  • Mahmud A, Megat-Yusoff P, Ahmad F, Farezzuan AA. Acid leaching as efficient chemical treatment for rice husk in production of amorphous silica nanoparticles. ARPN J Eng Appl Sci. 2016;11(22):13384.
  • Umeda J, Kondoh K. High-purification of amorphous silica originated from rice husks by combination of polysaccharide hydrolysis and metallic impurities removal. Ind Crops Prod. 2010;32(3):539–544. doi:10.1016/j.indcrop.2010.07.002
  • Yalcin N, Sevinc V. Studies on silica obtained from rice husk. Ceramics Int. 2001;27(2):219–224. doi:10.1016/S0272-8842(00)00068-7
  • Djangang C, Mlowe S, Njopwouo D, Revaprasadu N. One-step synthesis of silic a nanoparticles by thermolysis of rice husk ash using non toxic chemicals ethanol an d polyethylene glycol. J Appl Chem. 2015;4(4):1218–1226.
  • Thuadaij N, Nuntiya A. Synthesis and characterization of nanosilica from rice husk ash prepared by precipitation method. J Nat Sci Special Issue Nanotechnol. 2008;7(1):59–65.
  • Renuka N, Praveen A, Anas K. Influence of CTAB molar ratio in tuning the texture of rice husk silica into MCM 41 and SBA-16. Mater Lett. 2013;109:70–73. doi:10.1016/j.matlet.2013.07.074
  • Chiarakorn S, Areerob T, Grisdanurak N. Influence of functional silanes on hydrophobicity of MCM-41 synthesized from rice husk. Sci Technol Adv Mater. 2007;8(1–2):110. doi:10.1016/j.stam.2006.11.011
  • Shaikh IR, Shaikh AA. Utilization of wheat husk ash as silica source for the synthesis of MCM-41 type mesoporous silicates: a sustainable approach towards valorization of the agricultural waste stream. Res J Chem Sci. 2013;3(11):66–72.
  • Okoronkwo EA, Imoisili PE, Olubayode SA, Olusunle SO. Development of silica nanoparticle from corn cob ash. Adv Nanopart. 2016;5(02):135. doi:10.4236/anp.2016.52015
  • Mohanraj K, Kannan S, Barathan S, Sivakumar G. Preparation and characterization of nano SiO2 from corn cob ash by precipitation method. 2012.
  • Wang W, Martin JC, Fan X, Han A, Luo Z, Sun L. Silica nanoparticles and frameworks from rice husk biomass. ACS Appl Mater Interfaces. 2012;4(2):977–981. doi:10.1021/am201619u
  • Fernandes IJ, Calheiro D, Kieling AG, et al. Characterization of rice husk ash produced using different biomass combustion techniques for energy. Fuel. 2016;165:351–359. doi:10.1016/j.fuel.2015.10.086
  • Sharma R, Sharma S, Dutta S, Zboril R, Gawande MB. Silica-nanosphere-based organic–inorganic hybrid nanomaterials: synthesis, functionalization and applications in catalysis. Green Chem. 2015;17(6):3207–3230. doi:10.1039/C5GC00381D
  • Fujiwara M, Shiokawa K, Sakakura I, Nakahara Y. Preparation of hierarchical architectures of silica particles with hollow structure and nanoparticle shells: a material for the high reflectivity of UV and visible light. Langmuir. 2010;26(9):6561–6567. doi:10.1021/la9043396
  • Deng T-S, Marlow F. Synthesis of monodisperse polystyrene@ vinyl-SiO2 core–shell particles and hollow SiO2 spheres. Chem Mater. 2012;24(3):536–542. doi:10.1021/cm203099m
  • Huh S, Wiench JW, Yoo J-C, Pruski M, Lin VS-Y. Organic functionalization and morphology control of mesoporous silicas via a co-condensation synthesis method. Chem Mater. 2003;15(22):4247–4256. doi:10.1021/cm0210041
  • Saroj S, Rajput SJ. Tailor-made pH-sensitive polyacrylic acid functionalized mesoporous silica nanoparticles for efficient and controlled delivery of anti-cancer drug Etoposide. Drug Dev Ind Pharm. 2018;44(7):1198–1211. doi:10.1080/03639045.2018.1438467
  • Ojah N, Saikia D, Gogoi D, et al. Surface modification of core-shell silk/PVA nanofibers by oxygen dielectric barrier discharge plasma: studies of physico-chemical properties and drug release behavior. Appl Surf Sci. 2019;475:219–229. doi:10.1016/j.apsusc.2018.12.270
  • Ojah N, Deka J, Haloi S, et al. Chitosan coated silk fibroin surface modified by atmospheric dielectric-barrier discharge (DBD) plasma: a mechanically robust drug release system. J Biomater Sci Polym Ed. 2019;30(13):1142–1160. doi:10.1080/09205063.2019.1622844
  • Das P, Ojah N, Kandimalla R, et al. Surface modification of electrospun PVA/chitosan nanofibers by dielectric barrier discharge plasma at atmospheric pressure and studies of their mechanical properties and biocompatibility. Int J Biol Macromol. 2018;114:1026–1032. doi:10.1016/j.ijbiomac.2018.03.115
  • Ojah N, Borah R, Ahmed GA, Mandal M, Choudhury AJ. Surface modification of electrospun silk/AMOX/PVA nanofibers by dielectric barrier discharge plasma: physiochemical properties, drug delivery and in-vitro biocompatibility. Prog Biomater. 2020;9(4):219–237. doi:10.1007/s40204-020-00144-1
  • Hossen S, Hossain MK, Basher M, Mia M, Rahman M, Uddin MJ. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: a review. J Adv Res. 2019;15:1–18. doi:10.1016/j.jare.2018.06.005
  • Ud Din F, Aman W, Ullah I, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine. 2017;12(7291):7291–7309.
  • Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16(1):1–33. doi:10.1186/s12951-017-0328-8
  • Chowdhury A, Kunjiappan S, Panneerselvam T, Somasundaram B, Bhattacharjee C. Nanotechnology and nanocarrier-based approaches on treatment of degenerative diseases. Int Nano Lett. 2017;7(2):91–122.
  • Moghimi S, Simberg D. Nanoparticle transport pathways into tumors. J Nanopart Res. 2018;20(6):1–4. doi:10.1007/s11051-018-4273-8
  • Vu MN, Rajasekhar P, Poole DP, et al. Rapid assessment of nanoparticle extravasation in a microfluidic tumor model. ACS Appl Nano Mater. 2019;2(4):1844–1856. doi:10.1021/acsanm.8b02056
  • Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Sign Transduct Target Ther. 2018;3(1):1–19. doi:10.1038/s41392-017-0004-3
  • Yang J, Jia C, Yang J. Designing nanoparticle-based drug delivery systems for precision medicine. Int J Med Sci. 2021;18(13):2943–2949. doi:10.7150/ijms.60874
  • Khalid K, Tan X, Mohd Zaid HF, et al. Advanced in developmental organic and inorganic nanomaterial: a review. Bioengineered. 2020;11(1):328–355. doi:10.1080/21655979.2020.1736240
  • Akbarzadeh A, Khalilov R, Mostafavi E, et al. Role of dendrimers in advanced drug delivery and biomedical applications: a review. Exp Oncol. 2018;40(3):178–183. doi:10.31768/2312-8852.2018.40(3):178-183
  • Zare H, Ahmadi S, Ghasemi A, et al. Carbon nanotubes: smart drug/gene delivery carriers. Int J Nanomedicine. 2021;16:1681. doi:10.2147/IJN.S299448
  • Mostafavi E, Medina-Cruz D, Vernet-Crua A, et al. Green nanomedicine: the path to the next generation of nanomaterials for diagnosing brain tumors and therapeutics? Expert Opin Drug Deliv. 2021;1–22. doi:10.1080/17425247.2021.1865306
  • De Villiers MM, Aramwit P, Kwon GS. Nanotechnology in Drug Delivery. Springer; 2011.
  • Ashrafizadeh M, Saebfar H, Gholami MH, et al. Doxorubicin-loaded graphene oxide nanocomposites in cancer medicine: stimuli-responsive carriers, co-delivery and suppressing resistance. Expert Opin Drug Deliv. 2022. doi:10.1080/17425247.2022.2041598
  • Yao P, Zou A, Tian Z, et al. Construction and characterization of a temperature-responsive nanocarrier for imidacloprid based on mesoporous silica nanoparticles. Colloids Surf B Biointerfaces. 2021;198:111464. doi:10.1016/j.colsurfb.2020.111464
  • Liu L, Ma H, Yu J, Fan Y. Fabrication of glycerophosphate-based nanochitin hydrogels for prolonged release under in vitro physiological conditions. Cellulose. 2021;28(8):4887–4897. doi:10.1007/s10570-021-03819-5
  • Poudel BK, Soe ZC, Ruttala HB, et al. In situ fabrication of mesoporous silica-coated silver-gold hollow nanoshell for remotely controllable chemo-photothermal therapy via phase-change molecule as gatekeepers. Int J Pharm. 2018;548(1):92–103. doi:10.1016/j.ijpharm.2018.06.056
  • Karimi M, Mirshekari H, Aliakbari M, Sahandi-Zangabad P, Hamblin MR. Smart mesoporous silica nanoparticles for controlled-release drug delivery. Nanotechnol Rev. 2016;5(2):195–207. doi:10.1515/ntrev-2015-0057
  • Zhang L, Li Y, Jimmy CY. Chemical modification of inorganic nanostructures for targeted and controlled drug delivery in cancer treatment. J Mater Chem B. 2014;2(5):452–470. doi:10.1039/C3TB21196G
  • Li R, Peng F, Cai J, Yang D, Zhang P. Redox dual-stimuli responsive drug delivery systems for improving tumor-targeting ability and reducing adverse side effects. Asian J Pharm Sci. 2020;15(3):311–325. doi:10.1016/j.ajps.2019.06.003
  • Kundu M, Sadhukhan P, Ghosh N, et al. In vivo therapeutic evaluation of a novel bis-lawsone derivative against tumor following delivery using mesoporous silica nanoparticle based redox-responsive drug delivery system. Mater Sci Eng C. 2021;126:112142. doi:10.1016/j.msec.2021.112142
  • Cabral-Pacheco GA, Garza-Veloz I, Ramirez-Acuña JM, et al. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int J Mol Sci. 2020;21(24):9739. doi:10.3390/ijms21249739
  • Vaghasiya K, Ray E, Sharma A, Katare OP, Verma RK. Matrix metalloproteinase-responsive mesoporous silica nanoparticles cloaked with cleavable protein for “self-actuating” on-demand controlled drug delivery for cancer therapy. ACS App Bio Mater. 2020;3(8):4987–4999. doi:10.1021/acsabm.0c00497
  • Du M, Chen Y, Tu J, et al. Ultrasound responsive magnetic mesoporous silica nanoparticle-loaded microbubbles for efficient gene delivery. ACS Biomater Sci Eng. 2020;6(5):2904–2912. doi:10.1021/acsbiomaterials.0c00014
  • Wang Y, Wang L, Guo L, et al. Photo-responsive magnetic mesoporous silica nanocomposites for magnetic targeted cancer therapy. N J Chem. 2019;43(12):4908–4918. doi:10.1039/C8NJ06105J
  • Asadi N, Annabi N, Mostafavi E, et al. Synthesis, characterization and in vitro evaluation of magnetic nanoparticles modified with PCL–PEG–PCL for controlled delivery of 5FU. Artif Cells Nanomed Biotechnol. 2018;46(sup1):938–945. doi:10.1080/21691401.2018.1439839
  • Cheng C-A, Chen W, Zhang L, Wu HH, Zink JI. A responsive mesoporous silica nanoparticle platform for magnetic resonance imaging-guided high-intensity focused ultrasound-stimulated cargo delivery with controllable location, time, and dose. J Am Chem Soc. 2019;141(44):17670–17684. doi:10.1021/jacs.9b07591
  • Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12(11):991. doi:10.1038/nmat3776
  • Paris JL, Villaverde G, Cabañas MV, Manzano M, Vallet-Regí M. From proof-of-concept material to PEGylated and modularly targeted ultrasound-responsive mesoporous silica nanoparticles. J Mater Chem B. 2018;6(18):2785–2794. doi:10.1039/C8TB00444G
  • Wood AK, Sehgal CM. A review of low-intensity ultrasound for cancer therapy. Ultrasound Med Biol. 2015;41(4):905–928. doi:10.1016/j.ultrasmedbio.2014.11.019
  • Chen Y, Chen H, Zhang S, et al. Multifunctional mesoporous nanoellipsoids for biological bimodal imaging and magnetically targeted delivery of anticancer drugs. Adv Funct Mater. 2011;21(2):270–278. doi:10.1002/adfm.201001495
  • Shen S, Tang H, Zhang X, et al. Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation. Biomaterials. 2013;34(12):3150–3158. doi:10.1016/j.biomaterials.2013.01.051
  • Terentyuk G, Panfilova E, Khanadeev V, et al. Gold nanorods with a hematoporphyrin-loaded silica shell for dual-modality photodynamic and photothermal treatment of tumors in vivo. Nano Res. 2014;7(3):325–337. doi:10.1007/s12274-013-0398-3
  • Wu J, Bremner DH, Niu S, Li D, Tang R, Zhu L-M. Multifunctional A7R peptide-modified hollow mesoporous silica@ Ag2S nanotheranostics for photoacoustic/near-infrared fluorescence imaging-guided tumor-targeted chemo-photothermal therapy. J Biomed Nanotechnol. 2019;15(7):1415–1431. doi:10.1166/jbn.2019.2729
  • Ong C, Cha BG, Kim J. Mesoporous silica nanoparticles doped with gold nanoparticles for combined cancer immunotherapy and photothermal therapy. ACS App Bio Mater. 2019;2(8):3630–3638. doi:10.1021/acsabm.9b00483
  • Liu X, Wu X, Xing Y, et al. Reduced graphene oxide/mesoporous silica nanocarriers for pH-triggered drug release and photothermal therapy. ACS App Bio Mater. 2020;3(5):2577–2587. doi:10.1021/acsabm.9b01108
  • Song G, Wang Q, Wang Y, et al. A low‐toxic multifunctional nanoplatform based on Cu9S5@ mSiO2 core‐shell nanocomposites: combining photothermal‐and chemotherapies with infrared thermal imaging for cancer treatment. Adv Funct Mater. 2013;23(35):4281–4292. doi:10.1002/adfm.201203317
  • Liu J, Wang C, Wang X, et al. Mesoporous silica coated single‐walled carbon nanotubes as a multifunctional light‐responsive platform for cancer combination therapy. Adv Funct Mater. 2015;25(3):384–392. doi:10.1002/adfm.201403079
  • Chen S, Xing C, Huang D, et al. Eradication of tumor growth by delivering novel photothermal selenium-coated tellurium nanoheterojunctions. Sci Adv. 2020;6(15):eaay6825. doi:10.1126/sciadv.aay6825
  • Tsai C-P, Chen C-Y, Hung Y, Chang F-H, Mou C-Y. Monoclonal antibody-functionalized mesoporous silica nanoparticles (MSN) for selective targeting breast cancer cells. J Mater Chem. 2009;19(32):5737–5743. doi:10.1039/b905158a
  • Zahavi D, Weiner L. Monoclonal antibodies in cancer therapy. Antibodies. 2020;9(3):34. doi:10.3390/antib9030034
  • Irfan M, Khan RU, Qu F. Aptamers for personalized therapeutics. In: Aptamers for Medical Applications: From Diagnosis to Therapeutics. Springer; 2021:179.
  • Phan QA, Truong LB, Medina-Cruz D, Dincer C, Mostafavi E. CRISPR/Cas-powered nanobiosensors for diagnostics. Biosens Bioelectron. 2021;197:113732. doi:10.1016/j.bios.2021.113732
  • Xie X, Li F, Zhang H, et al. EpCAM aptamer-functionalized mesoporous silica nanoparticles for efficient colon cancer cell-targeted drug delivery. Eur J Pharm Sci. 2016;83:28–35. doi:10.1016/j.ejps.2015.12.014
  • Ghosh D, Peng X, Leal J, Mohanty RP. Peptides as drug delivery vehicles across biological barriers. J Pharma Investig. 2018;48(1):89–111. doi:10.1007/s40005-017-0374-0
  • Ruoslahti E. Tumor penetrating peptides for improved drug delivery. Adv Drug Deliv Rev. 2017;110:3–12. doi:10.1016/j.addr.2016.03.008
  • Dong W, Wen J, Li Y, Wang C, Sun S, Shang D. Targeted antimicrobial peptide delivery in vivo to tumor with near infrared photoactivated mesoporous silica nanoparticles. Int J Pharm. 2020;588:119767. doi:10.1016/j.ijpharm.2020.119767
  • Ding Z, Wang D, Shi W, et al. In vivo targeting of liver cancer with tissue-and nuclei-specific mesoporous silica nanoparticle-based nanocarriers in mice. Int J Nanomedicine. 2020;15:8383. doi:10.2147/IJN.S272495
  • Zhang C, Pu K. Molecular and nanoengineering approaches towards activatable cancer immunotherapy. Chem Soc Rev. 2020;49(13):4234–4253. doi:10.1039/C9CS00773C
  • Pan L, He Q, Liu J, et al. Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J Am Chem Soc. 2012;134(13):5722–5725. doi:10.1021/ja211035w
  • An N, Lin H, Yang C, et al. Gated magnetic mesoporous silica nanoparticles for intracellular enzyme-triggered drug delivery. Mater Sci Eng C. 2016;69:292–300. doi:10.1016/j.msec.2016.06.086
  • Shen Y, Li M, Liu T, et al. A dual-functional HER2 aptamer-conjugated, pH-activated mesoporous silica nanocarrier-based drug delivery system provides in vitro synergistic cytotoxicity in HER2-positive breast cancer cells. Int J Nanomedicine. 2019;14:4029-4044. doi:10.2147/IJN.S201688
  • Paris JL, Manzano M, Cabañas MV, Vallet-Regí M. Mesoporous silica nanoparticles engineered for ultrasound-induced uptake by cancer cells. Nanoscale. 2018;10(14):6402–6408. doi:10.1039/C8NR00693H
  • Zhang T, Liu H, Li L, et al. Leukocyte/platelet hybrid membrane-camouflaged dendritic large pore mesoporous silica nanoparticles co-loaded with photo/chemotherapeutic agents for triple negative breast cancer combination treatment. Bioactive Mater. 2021;6(11):3865–3878. doi:10.1016/j.bioactmat.2021.04.004
  • AbouAitah K, Hassan HA, Swiderska-Sroda A, et al. Targeted nano-drug delivery of colchicine against colon cancer cells by means of mesoporous silica nanoparticles. Cancers. 2020;12(1):144. doi:10.3390/cancers12010144
  • Tran VA, Van Giau Vo KS, Lee S-W, An SSA, An SSA. Multimodal mesoporous silica nanocarriers for dual stimuli-responsive drug release and excellent photothermal ablation of cancer cells. Int J Nanomedicine. 2020;15:7667-7685. doi:10.2147/IJN.S254344
  • Terzioğlu P, Yucel S. Synthesis of magnesium silicate from wheat husk ash: effects of parameters on structural and surface properties. BioResources. 2012;7(4):5435–5447. doi:10.15376/biores.7.4.5435-5447
  • Mhilu CF. Analysis of energy characteristics of rice and coffee husks blends. ISRN Chem Eng. 2014;2014:1–6. doi:10.1155/2014/196103
  • Pa FC, Chik A, Bari MF. Palm ash as an alternative source for silica production. EDP Sci. 2016;2016:01062.
  • Cordeiro GC, Toledo Filho RD, Fairbairn EM, Tavares L, Oliveira CH. Influence of mechanical grinding on the pozzolanic activity of residual sugarcane bagasse ash. Adv Appl Ceramics. 2004;731–740. doi:10.1179/1743676111Y.0000000050
  • Liu N, Huo K, McDowell MT, Zhao J, Cui Y. Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes. Sci Rep. 2013;3:1919. doi:10.1038/srep01919
  • Zhang Z, He W, Zheng J, Wang G, Ji J. Rice husk ash-derived silica nanofluids: synthesis and stability study. Nanoscale Res Lett. 2016;11(1):502. doi:10.1186/s11671-016-1726-9
  • Siriworarat K, Deerattrakul V, Dittanet P, Kongkachuichay P. Production of methanol from carbon dioxide using palladium-copper-zinc loaded on MCM-41: comparison of catalysts synthesized from flame spray pyrolysis and sol-gel method using silica source from rice husk ash. J Clean Prod. 2017;142:1234–1243. doi:10.1016/j.jclepro.2016.07.099
  • Seliem MK, Komarneni S, Khadra MRA. Phosphate removal from solution by composite of MCM-41 silica with rice husk: kinetic and equilibrium studies. Micropor Mesopor Mater. 2016;224:51–57. doi:10.1016/j.micromeso.2015.11.011
  • Shaikh IR, Shaikh AA. Utilization of wheat husk ash as silica source for the synthesis of MCM-41 type mesoporous silicates: a sustainable approach towards valorization of the agricultural waste stream. Res J Chem Sci ISSN. 2013;2231:606X.
  • Utama PS, Yamsaensung R, Sangwichien C. Silica gel derived from palm oil mill fly ash. Songklanakarin J Sci Technol. 2018;40(1). doi:10.14456/sjst-psu.2018.27
  • Ma’mani L, Nikzad S, Kheiri-Manjili H, et al. Curcumin-loaded guanidine functionalized PEGylated I3ad mesoporous silica nanoparticles KIT-6: practical strategy for the breast cancer therapy. Eur J Med Chem. 2014;83:646–654. doi:10.1016/j.ejmech.2014.06.069
  • Liu R, Zhang H, Zhang F, Wang X, Liu X, Zhang Y. Polydopamine doped reduced graphene oxide/mesoporous silica nanosheets for chemo-photothermal and enhanced photothermal therapy. Mater Sci Eng C. 2019;96:138–145. doi:10.1016/j.msec.2018.10.093
  • Hanafi-Bojd MY, Jaafari MR, Ramezanian N, et al. Surface functionalized mesoporous silica nanoparticles as an effective carrier for epirubicin delivery to cancer cells. Eur J Pharm Biopharm. 2015;89:248–258. doi:10.1016/j.ejpb.2014.12.009
  • Mladenović M, Morgan I, Ilić N, et al. Ph-responsive release of ruthenium metallotherapeutics from mesoporous silica-based nanocarriers. Pharmaceutics. 2021;13(4):460. doi:10.3390/pharmaceutics13040460
  • Pourjavadi A, Tehrani ZM. Mesoporous silica nanoparticles with bilayer coating of poly (acrylic acid-co-itaconic acid) and human serum albumin (HSA): a pH-sensitive carrier for gemcitabine delivery. Mater Sci Eng C. 2016;61:782–790. doi:10.1016/j.msec.2015.12.096
  • Lohiya G, Katti DS. Carboxylated chitosan-mediated improved efficacy of mesoporous silica nanoparticle-based targeted drug delivery system for breast cancer therapy. Carbohydr Polym. 2022;277:118822. doi:10.1016/j.carbpol.2021.118822
  • Shakeran Z, Keyhanfar M, Varshosaz J, Sutherland DS. Biodegradable nanocarriers based on chitosan-modified mesoporous silica nanoparticles for delivery of methotrexate for application in breast cancer treatment. Mater Sci Eng C. 2021;118:111526. doi:10.1016/j.msec.2020.111526
  • Pourjavadi A, Tehrani ZM, Jokar S. Chitosan based supramolecular polypseudorotaxane as a pH-responsive polymer and their hybridization with mesoporous silica-coated magnetic graphene oxide for triggered anticancer drug delivery. Polymer. 2015;76:52–61. doi:10.1016/j.polymer.2015.08.050
  • Mozafarinia M, Karimi S, Farrokhnia M, Esfandiari J. In vitro breast cancer targeting using Trastuzumab-conjugated mesoporous silica nanoparticles: towards the new strategy for decreasing size and high drug loading capacity for drug delivery purposes in MSN synthesis. Micropor Mesopor Mater. 2021;316:110950. doi:10.1016/j.micromeso.2021.110950
  • Mohseni M, Gilani K, Mortazavi SA. Preparation and characterization of rifampin loaded mesoporous silica nanoparticles as a potential system for pulmonary drug delivery. IJPR. 2015;14(1):27.
  • de Lima HH, Kupfer VL, Moisés MP, et al. Bionanocomposites based on mesoporous silica and alginate for enhanced drug delivery. Carbohydr Polym. 2018;196:126–134. doi:10.1016/j.carbpol.2018.04.107
  • Zhang Q, Guo J, Zhang X, Zhao Y, Cao L, Sun L. Redox-and enzyme-responsive fluorescent porous silica nanocarriers for drug delivery. Sens Actuators B Chem. 2018;276:370–377. doi:10.1016/j.snb.2018.08.118
  • Xu X, Lü S, Gao C, et al. Self-fluorescent and stimuli-responsive mesoporous silica nanoparticles using a double-role curcumin gatekeeper for drug delivery. Chem Eng J. 2016;300:185–192. doi:10.1016/j.cej.2016.04.087
  • Adhikari C, Mishra A, Nayak D, Chakraborty A. Drug delivery system composed of mesoporous silica and hollow mesoporous silica nanospheres for chemotherapeutic drug delivery. J Drug Deliv Sci Technol. 2018;45:303–314. doi:10.1016/j.jddst.2018.03.020
  • Zeleňák V, Halamová D, Almáši M, Žid L, Zeleňáková A, Kapusta O. Ordered cubic nanoporous silica support MCM-48 for delivery of poorly soluble drug indomethacin. Appl Surf Sci. 2018;443:525–534. doi:10.1016/j.apsusc.2018.02.260
  • Jadhav SA, Brunella V, Scalarone D, Berlier G. Poly (NIPAM-co-MPS)-grafted multimodal porous silica nanoparticles as reverse thermoresponsive drug delivery system. Asian J Pharm Sci. 2017;12(3):279–284. doi:10.1016/j.ajps.2017.02.002
  • Qiu L, Zhao Y, Li B, Wang Z, Cao L, Sun L. Triple-stimuli (protease/redox/pH) sensitive porous silica nanocarriers for drug delivery. Sens Actuators B Chem. 2017;240:1066–1074. doi:10.1016/j.snb.2016.09.083
  • Wang Y, Han N, Zhao Q, et al. Redox-responsive mesoporous silica as carriers for controlled drug delivery: a comparative study based on silica and PEG gatekeepers. Eur J Pharm Sci. 2015;72:12–20. doi:10.1016/j.ejps.2015.02.008