223
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Surface-Enhanced Raman Spectroscopy of Pretreated Plasma Samples Predicts Disease Recurrence in Muscle-Invasive Bladder Cancer Patients Undergoing Neoadjuvant Chemotherapy and Radical Cystectomy

, , , , , , , , , & show all
Pages 1635-1646 | Published online: 05 Apr 2022

References

  • Patel VG, Oh WK, Galsky MD. Treatment of muscle-invasive and advanced bladder cancer in 2020. CA Cancer J Clin. 2020;70(5):404–423. doi:10.3322/caac.21631
  • Lenis AT, Lec PM, Chamie K, Mshs MD. Bladder cancer: a review. JAMA. 2020;324(19):1980–1991. doi:10.1001/jama.2020.17598
  • Ravi P, Pond GR, Diamantopoulos LN, et al. Optimal pathological response after neoadjuvant chemotherapy for muscle-invasive bladder cancer: results from a global, multicentre collaboration. BJU Int. 2021;128(5):607–614. doi:10.1111/bju.15434
  • De Nunzio C, Franco A, Simone G, et al. Validation of the COBRA nomogram for the prediction of cancer specific survival in patients treated with radical cystectomy for bladder cancer: an international wide cohort study. Eur J Surg Oncol. 2021;47(10):2646–2650. doi:10.1016/j.ejso.2021.04.035
  • Antoni S, Ferlay J, Soerjomataram I, Znaor A, Jemal A, Bray F. Bladder cancer incidence and mortality: a global overview and recent trends. Eur Urol. 2017;71(1):96–108. doi:10.1016/j.eururo.2016.06.010
  • Rosenblatt R, Sherif A, Rintala E, et al. Pathologic downstaging is a surrogate marker for efficacy and increased survival following neoadjuvant chemotherapy and radical cystectomy for muscle-invasive urothelial bladder cancer. Eur Urol. 2012;61:1229–1238. doi:10.1016/j.eururo.2011.12.010
  • Schuettfort VM, Pradere B, D’Andrea D, et al. Prognostic impact of preoperative plasma levels of urokinase plasminogen activator proteins on disease outcomes after radical cystectomy. J Urol. 2021;206(5):1122–1131. doi:10.1097/JU.0000000000001936
  • Laukhtina E, Schuettfort VM, D’Andrea D, et al. Preoperative plasma level of endoglin as a predictor for disease outcomes after radical cystectomy for nonmetastatic urothelial carcinoma of the bladder. Mol Carcinog. 2022;61(1):5–18. doi:10.1002/mc.23355
  • Christensen E, Birkenkamp-Demtröder K, Nordentoft I, et al. Liquid Biopsy analysis of FGFR3 and PIK3CA hotspot mutations for disease surveillance in bladder cancer. Eur Urol. 2017;71(6):961–969. doi:10.1016/j.eururo.2016.12.016
  • Amara CS, Vantaku V, Lotan Y, Putluri N. Recent advances in the metabolomic study of bladder cancer. Expert Rev Proteomics. 2019;16(4):315–324. doi:10.1080/14789450.2019.1583105
  • Liu X, Cheng X, Liu X, et al. Investigation of the urinary metabolic variations and the application in bladder cancer biomarker discovery. Int J Cancer. 2018;143(2):408–418. doi:10.1002/ijc.31323
  • Lane LA, Qian X, Nie S. SERS nanoparticles in Medicine: from label free detection to spectroscopic tagging. Chem Rev. 2015;115(19):10489–10529. doi:10.1021/acs.chemrev.5b00265
  • Tahir MA, Dina NE, Cheng H, Valev VK, Zhang L. Surface-enhanced Raman spectroscopy for bioanalysis and diagnosis. Nanoscale. 2021;13(27):11593–11634. doi:10.1039/D1NR00708D
  • Chen N, Rong M, Shao X, et al. Surface-enhanced Raman spectroscopy of serum accurately detects prostate cancer in patients with prostate-specific antigen levels of 4–10 ng/mL. Int J Nano Med. 2017;12:5399–5407. doi:10.2147/IJN.S137756
  • Nargis HF, Nawaz H, Bhatti HN, Jilani K, Saleem M. Comparison of surface enhanced Raman spectroscopy and Raman spectroscopy for the detection of breast cancer based on serum samples. Spectrochim Acta A Mol Biomol Spectrosc. 2021;246:119034. doi:10.1016/j.saa.2020.119034
  • Lei J, Yang D, Li R, et al. Label-free surface-enhanced Raman spectroscopy for diagnosis and analysis of serum samples with different types lung cancer. Spectrochim Acta A Mol Biomol Spectrosc. 2021;261:120021. doi:10.1016/j.saa.2021.120021
  • Shao X, Zhang H, Wang Y, et al. Deep convolutional neural networks combine Raman spectral signature of serum for prostate cancer bone metastases screening. Nanomedicine. 2020;29:102245. doi:10.1016/j.nano.2020.102245
  • Morselli S, Baria E, Cicchi R, et al. The feasibility of multimodal fiber optic spectroscopy analysis in bladder cancer detection, grading, and staging. Urologia. 2021;88(4):306–314. doi:10.1177/03915603211007018
  • Baria E, Morselli S, Anand S, et al. Label-free grading and staging of urothelial carcinoma through multimodal fibre-probe spectroscopy. J Biophotonics. 2019;12(11):e201900087. doi:10.1002/jbio.201900087
  • Hu D, Xu X, Zhao Z, et al. Detecting urine metabolites of bladder cancer by surface-enhanced Raman spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc. 2021;247:119108. doi:10.1016/j.saa.2020.119108
  • Chen S, Zhu S, Cui X, et al. Identifying non-muscle-invasive and muscle-invasive bladder cancer based on blood serum surface-enhanced Raman spectroscopy. Biomed Opt Express. 2019;10(7):3533–3544. doi:10.1364/BOE.10.003533
  • Shapiro A, Gofrit ON, Pizov G, Cohen JK, Maier J. Raman molecular imaging: a novel spectroscopic technique for diagnosis of bladder cancer in urine specimens. Eur Urol. 2011;59(1):106–112. doi:10.1016/j.eururo.2010.10.027
  • Lee PC, Meisel DJJ. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem. 1982;86(17):3391–3395. doi:10.1021/j100214a025
  • Pan J, Shao X, Zhu Y, et al. Surface-enhanced Raman spectroscopy before radical prostatectomy predicts biochemical recurrence better than CAPRA-S. Int J Nanomedicine. 2019;14:431–440. doi:10.2147/IJN.S186226
  • Malini R, Venkatakrishna K, Kurien J, et al. Discrimination of normal, inflammatory, premalignant, and malignant oral tissue: a Raman spectroscopy study. Biopolymers. 2006;81(3):179–193. doi:10.1002/bip.20398
  • Cheng WT, Liu MT, Liu HN, Lin SY. Micro-Raman spectroscopy used to identify and grade human skin pilomatrixoma. Microsc Res Tech. 2005;68(2):75–79. doi:10.1002/jemt.20229
  • Ruiz-Chica AJ, Medina MA, Sánchez-Jiménez F, Ramírez FJ. Characterization by Raman spectroscopy of conformational changes on guanine–cytosine and adenine–thymine oligonucleotides induced by aminooxy analogues of spermidine. J Raman Spectrosc. 2004;35:93–100. doi:10.1002/jrs.1107
  • Patel KM, van der Vos KE, Smith CG, et al. Association of plasma and urinary mutant DNA with clinical outcomes in muscle invasive bladder cancer. Sci Rep. 2017;7(1):5554. doi:10.1038/s41598-017-05623-3
  • Schlücker S. Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew Chem Int Ed Engl. 2014;53(19):4756–4795. doi:10.1002/anie.201205748
  • Qian H, Shao X, Zhu Y, et al. Surface-enhanced Raman spectroscopy of preoperative serum samples predicts Gleason grade group upgrade in biopsy Gleason grade group 1 prostate cancer. Urol Oncol. 2020;38(6):601.e1–601.e9. doi:10.1016/j.urolonc.2020.02.009
  • Feng S, Chen R, Lin J, et al. Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light. Biosens Bioelectron. 2011;26(7):3167–3174. doi:10.1016/j.bios.2010.12.020
  • Xiao R, Zhang X, Rong Z, et al. Non-invasive detection of hepatocellular carcinoma serum metabolic profile through surface-enhanced Raman spectroscopy. Nanomedicine. 2016;12(8):2475–2484. doi:10.1016/j.nano.2016.07.014
  • Christensen E, Birkenkamp-Demtröder K, Sethi H, et al. Early detection of metastatic relapse and monitoring of therapeutic efficacy by ultra-deep sequencing of plasma cell-free DNA in patients with urothelial bladder carcinoma. J Clin Oncol. 2019;37(18):1547–1557. doi:10.1200/JCO.18.02052
  • Vandekerkhove G, Todenhöfer T, Annala M, et al. Circulating tumor DNA reveals clinically actionable somatic genome of metastatic bladder cancer. Clin Cancer Res. 2017;23(21):6487–6497. doi:10.1158/1078-0432.CCR-17-1140
  • Romas NA, Ionascu L, Sholem S, Ionescu G, Veenema RJ. A new method for determination of urinary tryptophan metabolites in bladder carcinoma. J Urol. 1975;114(2):223–225. doi:10.1016/S0022-5347(17)66991-X
  • Yoshida O, Brown RR, Bryan GT. Relationship between tryptophan metabolism and heterotopic recurrences of human urinary bladder tumors. Cancer. 1970;25(4):773–780. doi:10.1002/1097-0142(197004)25:4<773::AID-CNCR2820250405>3.0.CO;2-X
  • Lee SH, Mahendran R, Tham SM, et al. Tryptophan-kynurenine ratio as a biomarker of bladder cancer. BJU Int. 2021;127(4):445–453. doi:10.1111/bju.15205
  • Li C, Zhao H. Tryptophan and its metabolites in lung cancer: basic functions and clinical significance. Front Oncol. 2021;11:707277. doi:10.3389/fonc.2021.707277
  • Miyagi Y, Higashiyama M, Gochi A, et al. Plasma free amino acid profiling of five types of cancer patients and its application for early detection. PLoS One. 2011;6:e24143. doi:10.1371/journal.pone.0024143