208
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Chemiexcited Photodynamic Therapy Integrated in Polymeric Nanoparticles Capable of MRI Against Atherosclerosis

, , , , , , , , , & ORCID Icon show all
Pages 2353-2366 | Published online: 20 May 2022

References

  • Wang X, Luo D, Basilion JP. Photodynamic therapy: targeting cancer biomarkers for the treatment of cancers. Cancers. 2021;13:2992.
  • Thakar SB, Ghorpade PN, Shaker B, Lee J, Na D. Gas-mediated cancer therapy combined with starvation therapy, ultrasound therapy, chemotherapy, radiotherapy, and photodynamic therapy: a review. Environ Chem Lett. 2021;19:2981–2993. doi:10.1007/s10311-021-01218-7
  • Yang H, Liu R, Xu Y, Qian L, Dai Z. Photosensitizer nanoparticles boost photodynamic therapy for pancreatic cancer treatment. Nano-Micro Lett. 2021;13:35. doi:10.1007/s40820-020-00561-8
  • Kossodo S, LaMuraglia GM. Clinical potential of photodynamic therapy in cardiovascular disorders. Am J Cardiovasc Drugs. 2001;1:15–21. doi:10.2165/00129784-200101010-00002
  • Jain M, Zellweger M, Wagnières G, van den Bergh H, Cook S, Giraud MN. Photodynamic therapy for the treatment of atherosclerotic plaque: lost in translation? Cardiovasc Ther. 2017;35:1–14. doi:10.1111/1755-5922.12238
  • Woodburn KW, Fan Q, Kessel D, et al. Phototherapy of cancer and atheromatous plaque with texaphyrins. J Clin Laser Med Surg. 1996;14:343–348. doi:10.1089/clm.1996.14.343
  • Adili F, Randolph G, Van Eps S, Flotte TJ, Lamuraglia GM. Photodynamic therapy with local photosensitizer delivery inhibits experimental intimal hyperplasia. Lasers Surg Med. 1998;23:263–273. doi:10.1002/(SICI)1096-9101(1998)23:5<263:AID-LSM6>3.0.CO;2-V
  • Shon SM, Choi Y, Kim JY, et al. Photodynamic therapy using a protease-mediated theranostic agent reduces cathepsin-b activity in mouse atheromata in vivo. Arterioscler Thromb Vasc Biol. 2013;33:1360–1365. doi:10.1161/ATVBAHA.113.301290
  • Nitta N, Seko A, Sonoda A, et al. Is the use of Fullerene in photodynamic therapy effective for atherosclerosis? Cardiovasc Intervent Radiol. 2008;31:359–366. doi:10.1007/s00270-007-9238-8
  • Wennink JWH, Liu Y, Mäkinen PI, et al. Macrophage selective photodynamic therapy by meta-tetra (hydroxyphenyl) chlorin loaded polymeric micelles: a possible treatment for cardiovascular diseases. Eur J Pharm Sci. 2017;107:112–125. doi:10.1016/j.ejps.2017.06.038
  • Yi BG, Park OK, Jeong MS, et al. In vitro photodynamic effects of scavenger receptor targeted-photoactivatable nanoagents on activated macrophages. Int J Biol Macromol. 2017;97:181–189. doi:10.1016/j.ijbiomac.2017.01.037
  • Han XB, Li HX, Jiang YQ, et al. Upconversion nanoparticle-mediated photodynamic therapy induces autophagy and cholesterol efflux of macrophage-derived foam cells via ros generation. Cell Death Dis. 2017;8:1–11. doi:10.1038/cddis.2017.242
  • Zhu X, Wang H, Zheng L, et al. Upconversion nanoparticle-mediated photodynamic therapy induces THP-1 macrophage apoptosis via ROS bursts and activation of the mitochondrial caspase pathway. Int J Nanomedicine. 2015;10:3719–3736. doi:10.2147/IJN.S82162
  • Lu KY, Lin PY, Chuang EY, et al. H2O2-Depleting and O2-Generating selenium nanoparticles for fluorescence imaging and photodynamic treatment of proinflammatory-activated macrophages. ACS Appl Mater Interfaces. 2017;9:5158–5172. doi:10.1021/acsami.6b15515
  • Kałas W, Wysokińska E, Przybyło M, et al. Photoactive liposomal formulation of PVP-conjugated chlorin e6 for photodynamic reduction of atherosclerotic plaque. Int J Mol Sci. 2019;20:3852. doi:10.3390/ijms20163852
  • Tang J, Lobatto ME, Hassing L, et al. Inhibiting macrophage proliferation suppresses atherosclerotic plaque inflammation. Sci Adv. 2015;1:e1400223. doi:10.1126/sciadv.1400223
  • Duivenvoorden R, Tang J, Cormode DP, et al. A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation. Nat Commun. 2014;5:1–12.
  • Gao C, Huang Q, Liu C, et al. Treatment of atherosclerosis by macrophage-biomimetic nanoparticles via targeted pharmacotherapy and sequestration of proinflammatory cytokines. Nat Commun. 2020;11:2622. doi:10.1038/s41467-020-16439-7
  • Liu Y, Meng X, Bu W. Upconversion-based photodynamic cancer therapy. Coord Chem Rev. 2019;379:82–98. doi:10.1016/j.ccr.2017.09.006
  • Jain M, Zellweger M, Aurelien F, et al. Intra-arterial drug and light delivery for photodynamic therapy using visudyne®: implication for atherosclerotic plaque treatment. Front Physiol. 2016;7:400. doi:10.3389/fphys.2016.00400
  • Sebastin S, Stein LK, Dhamoon MS. Infection as a cardiovascular trigger: associations between different organ system Infections and cardiovascular events. Am J Med. 2020;133:1437–1443. doi:10.1016/j.amjmed.2020.04.033
  • Dai T, He W, Yao C, et al. Applications of inorganic nanoparticles in the diagnosis and therapy of atherosclerosis. Biomater Sci. 2020;8:3784–3799. doi:10.1039/D0BM00196A
  • Mao D, Wu W, Ji S, et al. Chemiluminescence-guided cancer therapy using a chemiexcited photosensitizer. Chem. 2017;3:991–1007. doi:10.1016/j.chempr.2017.10.002
  • Ding J, Lu G, Nie W, et al. Self-activatable photo-extracellular vesicle for synergistic trimodal anticancer therapy. Adv Mater. 2021;33:2005562. doi:10.1002/adma.202005562
  • Yu Z, Zhou P, Pan W, Li N, Tang B. A biomimetic nanoreactor for synergistic chemiexcited photodynamic therapy and starvation therapy against tumor metastasis. Nat Commun. 2018;9:1–9. doi:10.1038/s41467-018-07197-8
  • Yin L, Peng C, Tang Y, et al. Biomimetic oral targeted delivery of bindarit for immunotherapy of atherosclerosis. Biomater Sci. 2020;8:3640–3648. doi:10.1039/D0BM00418A
  • Meneghini BC, Tavares ER, Guido MC, et al. Lipid core nanoparticles as vehicle for docetaxel reduces atherosclerotic lesion, inflammation, cell death and proliferation in an atherosclerosis rabbit model. Vascul Pharmacol. 2019;115:46–54. doi:10.1016/j.vph.2019.02.003
  • Sang X, Yang Q, Shi G, Zhang L, Wang D, Ni C. Preparation of pH/redox dual responsive polymeric micelles with enhanced stability and drug controlled release. Mater Sci Eng C. 2018;91:727–733. doi:10.1016/j.msec.2018.06.012
  • Xin K, Li M, Lu D, et al. Bioinspired coordination micelles integrating high stability, triggered cargo release, and magnetic resonance imaging. ACS Appl Mater Interfaces. 2017;9:80–91. doi:10.1021/acsami.6b09425
  • Miao Y, Xie F, Cen J, Zhou F, Tao X, Luo J. Fe3+@polyDOPA-b-polysarcosine, a T1-weighted MRI contrast agent via controlled NTA polymerization. ACS Macro Lett. 2018;7:693–698. doi:10.1021/acsmacrolett.8b00287
  • Darwitan A, Wong YS, Nguyen LTH, et al. Liposomal nanotherapy for treatment of atherosclerosis. Adv Healthc Mater. 2020;9:1–11. doi:10.1002/adhm.202000465
  • Ma B, Xu H, Zhuang W, Wang Y, Li G, Wang Y. Reactive oxygen species responsive theranostic nanoplatform for two-photon aggregation-induced emission imaging and therapy of acute and chronic inflammation. ACS Nano. 2020;14:5862–5873. doi:10.1021/acsnano.0c01012
  • Lian Z, Perrard XYD, Peng X, et al. Replacing saturated fat with unsaturated fat in western diet reduces foamy monocytes and atherosclerosis in male ldlr-/- mice. Arterioscler Thromb Vasc Biol. 2020;40:72–85. doi:10.1161/ATVBAHA.119.313078
  • Vinchi F, Porto G, Simmelbauer A, et al. Atherosclerosis is aggravated by iron overload and ameliorated by dietary and pharmacological iron restriction. Eur Heart J. 2020;41:2681–2695. doi:10.1093/eurheartj/ehz112
  • Iron XS. Atherosclerosis: the link revisited. Trends Mol Med. 2019;25:659–661. doi:10.1016/j.molmed.2019.05.012
  • Spyropoulos-Antonakakis N, Sarantopoulou E, Trohopoulos PN, et al. Selective aggregation of PAMAM dendrimer nanocarriers and PAMAM/ZnPc nanodrugs on human atheromatous carotid tissues: a photodynamic therapy for atherosclerosis. Nanoscale Res Lett. 2015;10:210. doi:10.1186/s11671-015-0904-5
  • Tawakol A, Castano AP, Anatelli F, et al. Photosensitizer delivery to vulnerable atherosclerotic plaque: comparison of macrophage-targeted conjugate versus free chlorine (e6). J Biomed Opt. 2006;11:021008. doi:10.1117/1.2186039