199
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Characterization of Silver Nanoparticles Synthesized by Leaves of Lonicera japonica Thunb

, , , , , , , , , & show all
Pages 1647-1657 | Published online: 06 Apr 2022

References

  • Zhang J, Wang YZ, Yang WZ, Yang MQ, Zhang JY. Research progress in chemical constituents in plants of Polygonatum and their pharmacological effects. Zhongguo Zhong Yao Za Zhi. 2019;44(10):1989–2008. doi:10.19540/j.cnki.cjcmm.20190222.006
  • Yu L, Gan X, Zhou D, He F, Zeng S, Hu D. Synthesis and antiviral activity of novel 1,4-pentadien-3-one derivatives containing a 1,3,4-thiadiazole moiety. Molecules. 2017;22(4):658. doi:10.3390/molecules22040658
  • Meng X, Tang GY, Liu PH, Zhao C, Liu Q, Li H. Antioxidant activity and hepatoprotective effect of 10 medicinal herbs on CCl4-induced liver injury in mice. World J Gastroenterol. 2020;26(37):5629–5645. doi:10.3748/wjg.v26.i37.5629
  • Wang K, Chen Q, Shao Y, et al. Anticancer activities of TCM and their active components against tumor metastasis. Biomed Pharmacother. 2021;133:111044. doi:10.1016/j.biopha.2020.111044
  • Long SF, He TF, Wu D, Yang M, Piao XS. Forsythia suspensa extract enhances performance via the improvement of nutrient digestibility, antioxidant status, anti-inflammatory function, and gut morphology in broilers. Poult Sci. 2020;99(9):4217–4226. doi:10.1016/j.psj.2020.05.011
  • Liu J, Lin L, Jia Z, et al. Antibacterial potential of Forsythia suspensa polysaccharide against resistant Enterobacter cloacae with SHV-12 extended-spectrum β-lactamase (ESBL). J Cell Mol Med. 2020;24(15):8763–8771. doi:10.1111/jcmm.15510
  • Seo ON, Kim GS, Park S, et al. Determination of polyphenol components of Lonicera japonica Thunb. using liquid chromatography-tandem mass spectrometry: contribution to the overall antioxidant activity. Food Chem. 2012;134(1):572–577. doi:10.1016/j.foodchem.2012.02.124
  • Wang D, Du N, Wen L, et al. An efficient method for the preparative isolation and purification of flavonoid glycosides and caffeoylquinic acid derivatives from leaves of Lonicera japonica Thunb. using high-speed counter-current chromatography (HSCCC) and prep-HPLC guided by DPPH-HPLC experiments. Molecules. 2017;22(2):229. doi:10.3390/molecules22020229
  • Li RJ, Kuang XP, Wang WJ, Wan CP, Li WX. Comparison of chemical constitution and bioactivity among different parts of Lonicera japonica Thunb. J Sci Food Agric. 2020;100(2):614–622. doi:10.1002/jsfa.10056
  • Lin D, Zhao G, Liu J. Extraction of active components from Flos Lonicerae and their bacteriostatic test. Nat Prod Res Dev. 2003;15:436–437. doi:10.16333/j.1001-6880.2003.05.017
  • Rahman A, Kang SC. In vitro control of food-borne and food spoilage bacteria by essential oil and ethanol extracts of Lonicera japonica Thunb. Food Chem. 2009;116:670–675. doi:10.1016/j.foodchem.2009.03.014
  • Thanabhorn S, Jaijoy K, Thamaree S, Ingkaninan K, Panthong A. Acute and subacute toxicity study of the ethanol extract from Lonicera japonica Thunb. J Ethnopharmacol. 2006;107:370–373. doi:10.1016/j.jep.2006.03.023
  • Kuppusamy P, Yusoff MM, Maniam GP, Govindan N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications-An updated report. Saudi Pharm J. 2016;24(4):473–484. doi:10.1016/j.jsps.2014.11.013
  • Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16(1):71. doi:10.1186/s12951-018-0392-8
  • Paul NS, Yadav RP, Kaul SK, Puri CP. A simple biogenic method for the synthesis of silver nanoparticles using syngonium podophyllum, an ornamental plant. J Med Sci. 2016;3:111–115. doi:10.5005/jp-journals-10036-1103
  • Durán N, Durán M, de Jesus MB, Seabra AB, Fávaro WJ, Nakazato G. Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomed Nanotechnol. 2016;12(3):789–799. doi:10.1016/j.nano.2015.11.016
  • Pillai AM, Sivasankarapillai VS, Rahdar A, et al. Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity. J Mol Struct. 2020;1211:128107. doi:10.1016/j.molstruc.2020.128107
  • Abhilash RK, Pandey BD. Microbial synthesis of iron-based nanomaterials—A review. B Mater Sci. 2011;34(2):191–198. doi:10.1007/s12034-011-0076-6
  • Ahmed S, Ahmad M, Swami BL, Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res. 2016;7(1):17–28. doi:10.1016/j.jare.2015.02.007
  • Zhang Y, Cheng X, Zhang Y, Xue X, Fu Y. Biosynthesis of silver nanoparticles at room temperature using aqueous aloe leaf extract and antibacterial properties. Colloid Surface A. 2013;423:63–68. doi:10.1016/j.colsurfa.2013.01.059
  • Park TJ, Lee KG, Lee SY. Advances in microbial biosynthesis of metal nanoparticles. Appl Microbiol Biot. 2016;100(2):521–534. doi:10.1007/s00253-015-6904-7
  • Yuan CG, Huo C, Yu S, Gui B. Biosynthesis of gold nanoparticles using Capsicum annuum var. grossum pulp extract and its catalytic activity. Physica E. 2017;85:19–26. doi:10.1016/j.physe.2016.08.010
  • Vo TS, Le TT, Kim SY, Ngo DH. The role of myricetin from Rhodomyrtus tomentosa (Aiton) Hassk fruits on downregulation of FceRI-mediated mast cell activation. J Food Biochem. 2020;44(3):e13143. doi:10.1111/jfbc.13143
  • Mendes RA, Almeida SKC, Soares IN, et al. A computational investigation on the antioxidant potential of myricetin 3,4’-di-O-alpha-L-rhamnopyranoside. J Mol Model. 2018;24(6):133. doi:10.1007/S00894-018-3663-2
  • López-Miranda JL, Vázquez M, Fletes N, Esparza R, Rosas G. Biosynthesis of silver nanoparticles using a Tamarix gallica leaf extract and their antibacterial activity. Mater Lett. 2016;176:285–289. doi:10.1016/j.matlet.2016.04.126
  • Vignesh V, Felix Anbarasi K, Karthikeyeni S, Sathiyanarayanan G, Subramanian P, Thirumurugan R. A superficial phyto-assisted synthesis of silver nanoparticles and their assessment on hematological and biochemical parameters in Labeo rohita (Hamilton, 1822). Colloid Surface A. 2013;439:184–192. doi:10.1016/j.colsurfa.2013.04.011
  • Xiong J, Li S, Wang W, Hong Y, Tang K, Luo Q. Screening and identification of the antibacterial bioactive compounds from Lonicera japonica Thunb. leaves Food Chem. 2013;138(1):327–333. doi:10.1016/j.foodchem.2012.10.127
  • Zhao Y. Study on antimicrobial effects of leaves extracts of Lonicera japonica Thunb. Food Sci. 2007;28(7):63–65. doi:10.1016/j.foodchem.2012.10.127
  • Park K, Park H, Nagappan A, et al. Polyphenolic compounds from Korean Lonicera japonica Thunb. induces apoptosis via AKT and caspase cascade activation in A549 cells. Oncol Lett. 2017;13(4):2521–2530. doi:10.3892/ol.2017.5771
  • Ge L, Xiao L, Wan H, et al. Chemical constituents from Lonicera japonica flower buds and their antihepatoma and anti-HBV activities. Bioorg Chem. 2019;92:103198. doi:10.1016/j.bioorg.2019.103198
  • Ge L, Lia J, Wan H, et al. Novel flavonoids from Lonicera japonica flower buds and validation of their anti-hepatoma and hepatoprotective activity in vitro studies. Ind Crop Prod. 2018;125:114–122. doi:10.1016/j.indcrop.2018.08.073