581
Views
2
CrossRef citations to date
0
Altmetric
Review

Nanomedicine: An Emerging Novel Therapeutic Strategy for Hemorrhagic Stroke

ORCID Icon, , , , , , , , & show all
Pages 1927-1950 | Published online: 02 May 2022

References

  • Smith SD, Eskey CJ. Hemorrhagic stroke. Radiol Clin North Am. 2011;49(1):27–45. doi:10.1016/j.rcl.2010.07.011
  • Yang Q, Tong X, Schieb L, et al. Vital signs: recent trends in stroke death rates—United States, 2000–2015. Morb Mortal Wkly Rep. 2017;66(35):933. doi:10.15585/mmwr.mm6635e1
  • Chen S, Zeng L, Hu Z. Progressing haemorrhagic stroke: categories, causes, mechanisms and managements. J Neurol. 2014;261(11):2061–2078. doi:10.1007/s00415-014-7291-1
  • Caceres JA, Goldstein JN. Intracranial hemorrhage. Emerg Med Clin North Am. 2012;30(3):771–794. doi:10.1016/j.emc.2012.06.003
  • Mendelow AD, Gregson BA, Fernandes HM, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): a randomised trial. Lancet. 2005;365(9457):387–397. doi:10.1016/S0140-6736(05)70233-6
  • Mayer SA, Brun NC, Begtrup K, et al. Efficacy and safety of recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J Med. 2008;358(20):2127–2137. doi:10.1056/NEJMoa0707534
  • Post R, Germans MR, Tjerkstra MA, et al. Ultra-early tranexamic acid after subarachnoid haemorrhage (ULTRA): a randomised controlled trial. Lancet. 2021;397(10269):112–118. doi:10.1016/S0140-6736(20)32518-6
  • Vergouwen MD, Meijers JC, Geskus RB, et al. Biologic effects of simvastatin in patients with aneurysmal subarachnoid hemorrhage: a double-blind, placebo-controlled randomized trial. J Cereb Blood Flow Metab. 2009;29(8):1444–1453. doi:10.1038/jcbfm.2009.59
  • Selim M, Foster LD, Moy CS, et al. Deferoxamine mesylate in patients with intracerebral haemorrhage (i-DEF): a multicentre, randomised, placebo-controlled, double-blind Phase 2 trial. Lancet Neurol. 2019;18(5):428–438. doi:10.1016/S1474-4422(19)30069-9
  • Dilnawaz F, Acharya S, Sahoo SK. Recent trends of nanomedicinal approaches in clinics. Int J Pharm. 2018;538(1–2):263–278. doi:10.1016/j.ijpharm.2018.01.016
  • Su S, Kang P. Recent advances in nanocarrier-assisted therapeutics delivery systems. Pharmaceutics. 2020;12(9):837. doi:10.3390/pharmaceutics12090837
  • Zheng H, Chen C, Zhang J, Hu Z. Mechanism and therapy of brain edema after intracerebral hemorrhage. Cerebrovasc Dis. 2016;42(3–4):155–169. doi:10.1159/000445170
  • Hayman EG, Wessell A, Gerzanich V, Sheth KN, Simard JM. Mechanisms of global cerebral edema formation in aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2017;26(2):301–310. doi:10.1007/s12028-016-0354-7
  • Keep RF, Andjelkovic AV, Xiang J, et al. Brain endothelial cell junctions after cerebral hemorrhage: changes, mechanisms and therapeutic targets. J Cereb Blood Flow Metab. 2018;38(8):1255–1275. doi:10.1177/0271678X18774666
  • Chen S, Xu P, Fang Y, Lenahan C. The updated role of the blood brain barrier in subarachnoid hemorrhage: from basic and clinical studies. Curr Neuropharmacol. 2020;18(12):1266–1278. doi:10.2174/1570159X18666200914161231
  • Hu X, Tao C, Gan Q, Zheng J, Li H, You C. Oxidative stress in intracerebral hemorrhage: sources, mechanisms, and therapeutic targets. Oxid Med Cell Longev. 2016;2016:3215391. doi:10.1155/2016/3215391
  • Ayer R, Zhang JH. Oxidative stress in subarachnoid haemorrhage: significance in acute brain injury and vasospasm. In: Acta Neurochir Suppl. Springer; 2008:33–41.
  • Khey KMW, Huard A, Mahmoud SH. Inflammatory pathways following subarachnoid hemorrhage. Cell Mol Neurobiol. 2020;40(5):675–693. doi:10.1007/s10571-019-00767-4
  • Zhang Z, Zhang Z, Lu H, Yang Q, Wu H, Wang J. Microglial polarization and inflammatory mediators after intracerebral hemorrhage. Mol Neurobiol. 2017;54(3):1874–1886. doi:10.1007/s12035-016-9785-6
  • van Lieshout JH, Dibue-Adjei M, Cornelius JF, et al. An introduction to the pathophysiology of aneurysmal subarachnoid hemorrhage. Neurosurg Rev. 2018;41(4):917–930. doi:10.1007/s10143-017-0827-y
  • Ciurea A, Palade C, Voinescu D, Nica D. Subarachnoid hemorrhage and cerebral vasospasm–literature review. J Med Life. 2013;6(2):120.
  • Cordonnier C, Demchuk A, Ziai W, Anderson CS. Intracerebral haemorrhage: current approaches to acute management. Lancet. 2018;392(10154):1257–1268. doi:10.1016/S0140-6736(18)31878-6
  • Sharma D. Perioperative management of aneurysmal subarachnoid hemorrhage. Anesthesiology. 2020;133(6):1283–1305. doi:10.1097/ALN.0000000000003558
  • Liu‐DeRyke X, Rhoney D. Hemostatic therapy for the treatment of intracranial hemorrhage. Pharmacotherapy. 2008;28(4):485–495. doi:10.1592/phco.28.4.485
  • Marcolini E, Stretz C, DeWitt KM. Intracranial hemorrhage and intracranial hypertension. Emerg Med Clin North Am. 2019;37(3):529–544. doi:10.1016/j.emc.2019.04.001
  • Rajajee V, Pandey AS, Williamson CA. Subarachnoid hemorrhage and therapy formerly known as “Triple-H”-new directions. World Neurosurg. 2019;127:500–501. doi:10.1016/j.wneu.2019.04.212
  • Chakravarthi SS, Lyons L, Orozco AR, et al. Combined decompressive hemicraniectomy and port-based minimally invasive parafascicular surgery for the treatment of subcortical intracerebral hemorrhage: case series, technical note, and review of literature. World Neurosurg. 2021;146:e1226–e1235. doi:10.1016/j.wneu.2020.11.130
  • Zipfel GJ. Ultra-early surgery for aneurysmal subarachnoid hemorrhage. J Neurosurg. 2015;122(2):381–382. doi:10.3171/2014.8.JNS141613
  • Yang L, Wang F, Han H, Yang L, Zhang G, Fan Z. Functionalized graphene oxide as a drug carrier for loading pirfenidone in treatment of subarachnoid hemorrhage. Colloids Surf B Biointerfaces. 2015;129:21–29. doi:10.1016/j.colsurfb.2015.03.022
  • Dharmalingam P, Talakatta G, Mitra J, et al. Pervasive genomic damage in experimental intracerebral hemorrhage: therapeutic potential of a mechanistic-based carbon nanoparticle. ACS Nano. 2020;14(3):2827–2846. doi:10.1021/acsnano.9b05821
  • Zheng J, Lu J, Mei S, et al. Ceria nanoparticles ameliorate white matter injury after intracerebral hemorrhage: microglia-astrocyte involvement in remyelination. J Neuroinflammation. 2021;18(1):43. doi:10.1186/s12974-021-02101-6
  • Jeong HG, Cha BG, Kang DW, et al. Ceria nanoparticles synthesized with aminocaproic acid for the treatment of subarachnoid hemorrhage. Stroke. 2018;49(12):3030–3038. doi:10.1161/STROKEAHA.118.022631
  • Cha BG, Jeong H-G, Kang D-W, et al. Customized lipid-coated magnetic mesoporous silica nanoparticle doped with ceria nanoparticles for theragnosis of intracerebral hemorrhage. Nano Res. 2018;11(7):3582–3592. doi:10.1007/s12274-017-1924-5
  • Yang Y, Deng G, Wang P, et al. A selenium nanocomposite protects the mouse brain from oxidative injury following intracerebral hemorrhage. Int J Nanomedicine. 2021;16:775–788. doi:10.2147/IJN.S293681
  • Kang MK, Kim TJ, Kim YJ, et al. Targeted delivery of iron oxide nanoparticle-loaded human embryonic stem cell-derived spherical neural masses for treating intracerebral hemorrhage. Int J Mol Sci. 2020;21(10):3658.
  • Xu C, Qu X. Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Materials. 2014;6(3):e90–e90. doi:10.1038/am.2013.88
  • Kim CK, Kim T, Choi IY, et al. Ceria nanoparticles that can protect against ischemic stroke. Angew Chem Int Ed Engl. 2012;51(44):11039–11043. doi:10.1002/anie.201203780
  • Kwon HJ, Cha MY, Kim D, et al. Mitochondria-targeting ceria nanoparticles as antioxidants for alzheimer’s disease. ACS Nano. 2016;10(2):2860–2870. doi:10.1021/acsnano.5b08045
  • Kwon HJ, Kim D, Seo K, et al. Ceria nanoparticle systems for selective scavenging of mitochondrial, intracellular, and extracellular reactive oxygen species in parkinson’s disease. Angew Chem Int Ed Engl. 2018;57(30):9408–9412. doi:10.1002/anie.201805052
  • Zachara BA. Selenium and selenium-dependent antioxidants in chronic kidney disease. Adv Clin Chem. 2015;68:131–151.
  • Estelrich J, Escribano E, Queralt J, Busquets MA. Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int J Mol Sci. 2015;16(4):8070–8101. doi:10.3390/ijms16048070
  • Samuel EL, Duong MT, Bitner BR, Marcano DC, Tour JM, Kent TA. Hydrophilic carbon clusters as therapeutic, high-capacity antioxidants. Trends Biotechnol. 2014;32(10):501–505. doi:10.1016/j.tibtech.2014.08.005
  • Liu J, Cui L, Losic D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 2013;9(12):9243–9257. doi:10.1016/j.actbio.2013.08.016
  • Kiew SF, Kiew LV, Lee HB, Imae T, Chung LY. Assessing biocompatibility of graphene oxide-based nanocarriers: a review. J Control Release. 2016;226:217–228. doi:10.1016/j.jconrel.2016.02.015
  • Chang CZ, Wu SC, Lin CL, Kwan AL. Curcumin, encapsulated in nano-sized PLGA, down-regulates nuclear factor kappaB (p65) and subarachnoid hemorrhage induced early brain injury in a rat model. Brain Res. 2015;1608:215–224. doi:10.1016/j.brainres.2015.02.039
  • Zhang Z-Y, Jiang M, Fang J, et al. Enhanced therapeutic potential of nano-curcumin against subarachnoid hemorrhage-induced blood–brain barrier disruption through inhibition of inflammatory response and oxidative stress. Mol Neurobiol. 2017;54(1):1–14. doi:10.1007/s12035-015-9635-y
  • Li M, Liu G, Wang K, et al. Metal ion-responsive nanocarrier derived from phosphonated calix[4]arenes for delivering dauricine specifically to sites of brain injury in a mouse model of intracerebral hemorrhage. J Nanobiotechnology. 2020;18(1):61. doi:10.1186/s12951-020-00616-3
  • Mo Y, Duan L, Yang Y, et al. Nanoparticles improved resveratrol brain delivery and its therapeutic efficacy against intracerebral hemorrhage. Nanoscale. 2021;13(6):3827–3840. doi:10.1039/D0NR06249A
  • Chung CY, Yang JT, Kuo YC. Polybutylcyanoacrylate nanoparticles for delivering hormone response element-conjugated neurotrophin-3 to the brain of intracerebral hemorrhagic rats. Biomaterials. 2013;34(37):9717–9727. doi:10.1016/j.biomaterials.2013.08.083
  • You ZQ, Wu Q, Zhou XM, et al. Receptor-mediated delivery of astaxanthin-loaded nanoparticles to neurons: an enhanced potential for subarachnoid hemorrhage treatment. Front Neurosci. 2019;13:989. doi:10.3389/fnins.2019.00989
  • Zi L, Zhou W, Xu J, et al. Rosuvastatin nanomicelles target neuroinflammation and improve neurological deficit in a mouse model of intracerebral hemorrhage. Int J Nanomedicine. 2021;16:2933–2947. doi:10.2147/IJN.S294916
  • Zhu F, Zi L, Yang P, et al. Efficient Iron and ROS nanoscavengers for brain protection after intracerebral hemorrhage. ACS Appl Mater Interfaces. 2021;13(8):9729–9738. doi:10.1021/acsami.1c00491
  • Chonpathompikunlert P, Fan C-H, Ozaki Y, Yoshitomi T, Yeh C-K, Nagasaki Y. Redox nanoparticle treatment protects against neurological deficit in focused ultrasound-induced intracerebral hemorrhage. Nanomedicine. 2012;7(7):1029–1043. doi:10.2217/nnm.12.2
  • Tian XH, Wang ZG, Meng H, et al. Tat peptide-decorated gelatin-siloxane nanoparticles for delivery of CGRP transgene in treatment of cerebral vasospasm. Int J Nanomedicine. 2013;8:865–876. doi:10.2147/IJN.S39951
  • El-Say KM, El-Sawy HS. Polymeric nanoparticles: promising platform for drug delivery. Int J Pharm. 2017;528(1–2):675–691. doi:10.1016/j.ijpharm.2017.06.052
  • Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Preat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161(2):505–522. doi:10.1016/j.jconrel.2012.01.043
  • Dash TK, Konkimalla VB. Poly-small je, Ukrainian-caprolactone based formulations for drug delivery and tissue engineering: a review. J Control Release. 2012;158(1):15–33.
  • Grossen P, Witzigmann D, Sieber S, Huwyler J. PEG-PCL-based nanomedicines: a biodegradable drug delivery system and its application. J Control Release. 2017;260:46–60. doi:10.1016/j.jconrel.2017.05.028
  • Li Y, Gao J, Zhang C, et al. Stimuli-responsive polymeric nanocarriers for efficient gene delivery. Top Curr Chem. 2017;375(2):27. doi:10.1007/s41061-017-0119-6
  • Duan J, Zhang Y, Chen W, et al. Cationic polybutyl cyanoacrylate nanoparticles for DNA delivery. J Biomed Biotechnol. 2009;2009:149254. doi:10.1155/2009/149254
  • Lin Y, Pan Y, Shi Y, Huang X, Jia N, Jiang JY. Delivery of large molecules via poly(butyl cyanoacrylate) nanoparticles into the injured rat brain. Nanotechnology. 2012;23(16):165101. doi:10.1088/0957-4484/23/16/165101
  • Madkhali O, Mekhail G, Wettig SD. Modified gelatin nanoparticles for gene delivery. Int J Pharm. 2019;554:224–234. doi:10.1016/j.ijpharm.2018.11.001
  • Galho AR, Cordeiro MF, Ribeiro SA, et al. Protective role of free and quercetin-loaded nanoemulsion against damage induced by intracerebral haemorrhage in rats. Nanotechnology. 2016;27(17):175101. doi:10.1088/0957-4484/27/17/175101
  • Marques MS, Cordeiro MF, Marinho MAG, et al. Curcumin-loaded nanoemulsion improves haemorrhagic stroke recovery in wistar rats. Brain Res. 2020;1746:147007. doi:10.1016/j.brainres.2020.147007
  • Wang F, Teng Z, Liu D, Wang Y, Lou J, Dong Z. beta-caryophyllene liposomes attenuate neurovascular unit damage after subarachnoid hemorrhage in rats. Neurochem Res. 2020;45(8):1758–1768. doi:10.1007/s11064-020-03037-8
  • Miao YF, Peng T, Moody MR, et al. Delivery of xenon-containing echogenic liposomes inhibits early brain injury following subarachnoid hemorrhage. Sci Rep. 2018;8(1):450. doi:10.1038/s41598-017-18914-6
  • Takanashi Y, Ishida T, Meguro T, Kiwada H, Zhang JH, Yamamoto I. Efficacy of intrathecal liposomal fasudil for experimental cerebral vasospasm after subarachnoid hemorrhage. Neurosurgery. 2001;48(4):894–901. doi:10.1097/00006123-200104000-00041
  • Mohsen K, Azzazy HME, Allam NK, Basalious EB. Intranasal lipid nanocapsules for systemic delivery of nimodipine into the brain: in vitro optimization and in vivo pharmacokinetic study. Mater Sci Eng C Mater Biol Appl. 2020;116:111236. doi:10.1016/j.msec.2020.111236
  • Kim H, Britton GL, Peng T, Holland CK, McPherson DD, Huang SL. Nitric oxide-loaded echogenic liposomes for treatment of vasospasm following subarachnoid hemorrhage. Int J Nanomedicine. 2014;9:155–165. doi:10.2147/IJN.S48856
  • Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65(1):36–48. doi:10.1016/j.addr.2012.09.037
  • Ishida T, Harashima H, Kiwada H. Liposome clearance. Biosci Rep. 2002;22(2):197–224. doi:10.1023/A:1020134521778
  • Yan X, Scherphof GL, Kamps JA. Liposome opsonization. J Liposome Res. 2005;15(1–2):109–139. doi:10.1081/LPR-64971
  • Hosny KM, Khallaf RA, Asfour HZ, et al. Development and optimization of cinnamon oil nanoemulgel for enhancement of solubility and evaluation of antibacterial, antifungal and analgesic effects against oral microbiota. Pharmaceutics. 2021;13(7):1008. doi:10.3390/pharmaceutics13071008
  • Jaromin A, Parapini S, Basilico N, et al. Azacarbazole n-3 and n-6 polyunsaturated fatty acids ethyl esters nanoemulsion with enhanced efficacy against Plasmodium falciparum. Bioact Mater. 2021;6(4):1163–1174. doi:10.1016/j.bioactmat.2020.10.004
  • Nel J, Desmet CM, Driesschaert B, Saulnier P, Lemaire L, Gallez B. Preparation and evaluation of trityl-loaded lipid nanocapsules as oxygen sensors for electron paramagnetic resonance oximetry. Int J Pharm. 2019;554:87–92. doi:10.1016/j.ijpharm.2018.11.007
  • Moura RP, Pacheco C, Pego AP, Des Rieux A, Sarmento B. Lipid nanocapsules to enhance drug bioavailability to the central nervous system. J Control Release. 2020;322:390–400. doi:10.1016/j.jconrel.2020.03.042
  • Sang LY, Liang YX, Li Y, et al. A self-assembling nanomaterial reduces acute brain injury and enhances functional recovery in a rat model of intracerebral hemorrhage. Nanomedicine. 2015;11(3):611–620. doi:10.1016/j.nano.2014.05.012
  • Zhang N, Luo Y, He L, Zhou L, Wu W. A self-assembly peptide nanofibrous scaffold reduces inflammatory response and promotes functional recovery in a mouse model of intracerebral hemorrhage. Nanomedicine. 2016;12(5):1205–1217. doi:10.1016/j.nano.2015.12.387
  • Park J, Kim JY, Choi SK, et al. Thermo-sensitive assembly of the biomaterial REP reduces hematoma volume following collagenase-induced intracerebral hemorrhage in rats. Nanomedicine. 2017;13(6):1853–1862. doi:10.1016/j.nano.2017.04.001
  • Gelain F, Luo Z, Zhang S. Self-assembling peptide EAK16 and RADA16 nanofiber scaffold hydrogel. Chem Rev. 2020;120(24):13434–13460. doi:10.1021/acs.chemrev.0c00690
  • Somaa FA, Wang TY, Niclis JC, et al. Peptide-based scaffolds support human cortical progenitor graft integration to reduce atrophy and promote functional repair in a model of stroke. Cell Rep. 2017;20(8):1964–1977. doi:10.1016/j.celrep.2017.07.069
  • Yokoi H, Kinoshita T, Zhang S. Dynamic reassembly of peptide RADA16 nanofiber scaffold. Proc Natl Acad Sci U S A. 2005;102(24):8414–8419. doi:10.1073/pnas.0407843102
  • Ellis-Behnke RG, Liang YX, You SW, et al. Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc Natl Acad Sci U S A. 2006;103(13):5054–5059. doi:10.1073/pnas.0600559103
  • Guo J, Su H, Zeng Y, et al. Reknitting the injured spinal cord by self-assembling peptide nanofiber scaffold. Nanomedicine. 2007;3(4):311–321. doi:10.1016/j.nano.2007.09.003
  • Holmes TC, de Lacalle S, Su X, Liu G, Rich A, Zhang S. Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc Natl Acad Sci. 2000;97(12):6728–6733. doi:10.1073/pnas.97.12.6728
  • Cao H, Liu T, Chew SY. The application of nanofibrous scaffolds in neural tissue engineering. Adv Drug Deliv Rev. 2009;61(12):1055–1064. doi:10.1016/j.addr.2009.07.009
  • Kam L, Shain W, Turner J, Bizios R. Axonal outgrowth of hippocampal neurons on micro-scale networks of polylysine-conjugated laminin. Biomaterials. 2001;22(10):1049–1054. doi:10.1016/S0142-9612(00)00352-5
  • Otero-Ortega L, Gomez de Frutos MC, Laso-Garcia F, et al. Exosomes promote restoration after an experimental animal model of intracerebral hemorrhage. J Cereb Blood Flow Metab. 2018;38(5):767–779. doi:10.1177/0271678X17708917
  • Shen H, Yao X, Li H, et al. Role of exosomes derived from miR-133b modified MSCs in an experimental rat model of intracerebral hemorrhage. J Mol Neurosci. 2018;64(3):421–430. doi:10.1007/s12031-018-1041-2
  • Gong Y, Wang Y, Qu Q, et al. Nanoparticle encapsulated core-shell hydrogel for on-site BMSCs delivery protects from iron overload and enhances functional recovery. J Control Release. 2020;320:381–391. doi:10.1016/j.jconrel.2020.01.029
  • Lim TC, Mandeville E, Weng D, et al. Hydrogel-based therapy for brain repair after intracerebral hemorrhage. Transl Stroke Res. 2020;11(3):412–417. doi:10.1007/s12975-019-00721-y
  • Zhu Q, Gong Y, Guo T, et al. Thermo-sensitive keratin hydrogel against iron-induced brain injury after experimental intracerebral hemorrhage. Int J Pharm. 2019;566:342–351. doi:10.1016/j.ijpharm.2019.05.076
  • Guo T, Guo Y, Gong Y, et al. An enhanced charge-driven intranasal delivery of nicardipine attenuates brain injury after intracerebral hemorrhage. Int J Pharm. 2019;566:46–56. doi:10.1016/j.ijpharm.2019.05.050
  • Xu J, Duan Z, Qi X, et al. Injectable gelatin hydrogel suppresses inflammation and enhances functional recovery in a mouse model of intracerebral hemorrhage. Front Bioeng Biotechnol. 2020;8:785. doi:10.3389/fbioe.2020.00785
  • He Y, Qu Q, Luo T, et al. Human hair keratin hydrogels alleviate rebleeding after intracerebral hemorrhage in a rat model. ACS Biomater Sci Eng. 2019;5(2):1113–1122. doi:10.1021/acsbiomaterials.8b01609
  • Liao W, Du Y, Zhang C, et al. Exosomes: the next generation of endogenous nanomaterials for advanced drug delivery and therapy. Acta Biomater. 2019;86:1–14. doi:10.1016/j.actbio.2018.12.045
  • Karavasili C, Fatouros DG. Smart materials: in situ gel-forming systems for nasal delivery. Drug Discov Today. 2016;21(1):157–166. doi:10.1016/j.drudis.2015.10.016
  • Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioeng Transl Med. 2016;1(1):10–29. doi:10.1002/btm2.10003
  • Pedard M, El Amki M, Lefevre-Scelles A, Compere V, Castel H. Double direct injection of blood into the cisterna magna as a model of subarachnoid hemorrhage. J Vis Exp. 2020;162:e61322.
  • Kirkman MA, Allan SM, Parry-Jones AR. Experimental intracerebral hemorrhage: avoiding pitfalls in translational research. J Cereb Blood Flow Metab. 2011;31(11):2135–2151. doi:10.1038/jcbfm.2011.124
  • James ML, Warner DS, Laskowitz DT. Preclinical models of intracerebral hemorrhage: a translational perspective. Neurocrit Care. 2008;9(1):139–152. doi:10.1007/s12028-007-9030-2
  • Sehba FA. The rat endovascular perforation model of subarachnoid hemorrhage. Acta Neurochir Suppl. 2015;120:321–324. doi:10.1007/978-3-319-04981-6_55
  • Jia P, He J, Li Z, et al. Profiling of blood-brain barrier disruption in mouse intracerebral hemorrhage models: collagenase injection vs. autologous arterial whole blood infusion. Front Cell Neurosci. 2021;15:699736. doi:10.3389/fncel.2021.699736
  • Li Z, Liang G, Ma T, et al. Blood-brain barrier permeability change and regulation mechanism after subarachnoid hemorrhage. Metab Brain Dis. 2015;30(2):597–603. doi:10.1007/s11011-014-9609-1
  • Germano A, d’Avella D, Imperatore C, Caruso G, Tomasello F. Time-course of blood-brain barrier permeability changes after experimental subarachnoid haemorrhage. Acta neurochirurgica. 2000;142(5):575–581. doi:10.1007/s007010050472
  • Wu D, Ma Y, Cao Y, Zhang T. Mitochondrial toxicity of nanomaterials. Sci Total Environ. 2020;702:134994. doi:10.1016/j.scitotenv.2019.134994
  • Croissant JG, Fatieiev Y, Khashab NM. Degradability and clearance of silicon, organosilica, silsesquioxane, silica mixed oxide, and mesoporous silica nanoparticles. Adv Mater. 2017;29(9). doi:10.1002/adma.201604634
  • Bonnard T, Jayapadman A, Putri JA, et al. Low-fouling and biodegradable protein-based particles for thrombus imaging. ACS Nano. 2018;12(7):6988–6996. doi:10.1021/acsnano.8b02588
  • Starsich FH, Herrmann IK, Pratsinis SE. Nanoparticles for biomedicine: coagulation during synthesis and applications. Annu Rev Chem Biomol Eng. 2019;10:155–174. doi:10.1146/annurev-chembioeng-060718-030203
  • Bourquin J, Milosevic A, Hauser D, et al. Biodistribution, clearance, and long-term fate of clinically relevant nanomaterials. Adv Mater. 2018;30(19):e1704307. doi:10.1002/adma.201704307
  • Luk BT, Zhang L. Cell membrane-camouflaged nanoparticles for drug delivery. J Control Release. 2015;220:600–607. doi:10.1016/j.jconrel.2015.07.019
  • Dong X, Gao J, Zhang CY, Hayworth C, Frank M, Wang Z. Neutrophil membrane-derived nanovesicles alleviate inflammation to protect mouse brain injury from ischemic stroke. ACS Nano. 2019;13(2):1272–1283. doi:10.1021/acsnano.8b06572
  • Zhang CY, Dong X, Gao J, Lin W, Liu Z, Wang Z. Nanoparticle-induced neutrophil apoptosis increases survival in sepsis and alleviates neurological damage in stroke. Sci Adv. 2019;5(11):eaax7964. doi:10.1126/sciadv.aax7964
  • Mi P. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics. 2020;10(10):4557–4588. doi:10.7150/thno.38069