2,146
Views
26
CrossRef citations to date
0
Altmetric
Review

Biomedical Applications of Quantum Dots: Overview, Challenges, and Clinical Potential

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 1951-1970 | Published online: 02 May 2022

References

  • Younis MA, Tawfeek HM, Abdellatif AAH, Abdel-Aleem JA, Harashima H. Clinical translation of nanomedicines: challenges, opportunities, and keys. Adv Drug Deliv Rev. 2022;181:114083. doi:10.1016/j.addr.2021.114083
  • Yan ZP, Yang M, Lai CL. COVID-19 vaccines: a review of the safety and efficacy of current clinical trials. Pharmaceuticals. 2021;14:5.
  • Khalil IA, Younis MA, Kimura S, Harashima H. Lipid nanoparticles for cell-specific in vivo targeted delivery of nucleic acids. Biol Pharm Bull. 2020;43(4):584–595. doi:10.1248/bpb.b19-00743
  • Younis MA, Khalil IA, Elewa YHA, Kon Y, Harashima H. Ultra-small lipid nanoparticles encapsulating sorafenib and midkine-siRNA selectively-eradicate sorafenib-resistant hepatocellular carcinoma in vivo. J Control Release. 2021;331:335–349. doi:10.1016/j.jconrel.2021.01.021
  • Younis MA, Khalil IA, Abd Elwakil MM, Harashima H. A multifunctional lipid-based nanodevice for the highly specific codelivery of sorafenib and midkine siRNA to hepatic cancer cells. Mol Pharm. 2019;16(9):4031–4044. doi:10.1021/acs.molpharmaceut.9b00738
  • Abdellatif AAH, Alsharidah M, Al Rugaie O, Tawfeek HM, Tolba NS. Silver nanoparticle-coated ethyl cellulose inhibits tumor necrosis factor-α of breast cancer cells. Drug Des Devel Ther. 2021;15:2035–2046. doi:10.2147/DDDT.S310760
  • Hu X, Zhang Y, Ding T, Liu J, Zhao H. Multifunctional Gold nanoparticles: a novel nanomaterial for various medical applications and biological activities. Bioeng Biotechnol. 2020;8:990.
  • Baumann AE, Burns DA, Liu B, Thoi VS. Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices. Commun Chem. 2019;2(1):86. doi:10.1038/s42004-019-0184-6
  • Kargozar S, Hoseini SJ, Milan PB, Hooshmand S, Kim H-W, Mozafari M. Quantum dots: a review from concept to clinic. Biotechnol J. 2020;15(12):2000117.
  • Ekimov AI, Efros AL, Onushchenko AA. Quantum size effect in semiconductor microcrystals. Solid State Commun. 1985;56(11):921–924. doi:10.1016/S0038-1098(85)80025-9
  • House JE, House KA. Chapter 12 - Silicon, Germanium, Tin, and Lead. In: House JE, House KA, editors. Descriptive Inorganic Chemistry. 3rd ed. Boston: Academic Press; 2016:177–196.
  • Speranskaya ES, Beloglazova NV, Lenain P, et al. Polymer-coated fluorescent CdSe-based quantum dots for application in immunoassay. Biosens Bioelectron. 2014;53:225–231. doi:10.1016/j.bios.2013.09.045
  • Chen D, Wu IC, Liu Z, et al. Semiconducting polymer dots with bright narrow-band emission at 800 nm for biological applications. Chem Sci. 2017;8(5):3390–3398. doi:10.1039/C7SC00441A
  • Abdellatif AA. Targeting of somatostatin receptors using quantum dots nanoparticles decorated with octreotide. J Nanomed Nanotechnol. 2015;2015:1.
  • Jahangir MA, Gilani SJ, Muheem A, et al. Quantum dots: next generation of smart nano-systems. Pharm Nanotechnol. 2019;7(3):234–245. doi:10.2174/2211738507666190429113906
  • Hu L, Zhao Q, Huang S, et al. Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture. Nat Commun. 2021;12(1):466. doi:10.1038/s41467-020-20749-1
  • Brkić S. Optical properties of quantum dots. Eur Int J Sci Technol. 2016;5(9):98–107.
  • Hong NH. Chapter 1 - Introduction to nanomaterials: basic properties, synthesis, and characterization. In: Hong NH, editor. Nano-Sized Multifunctional Materials. Elsevier; 2019:1–19.
  • Voznyy O, Levina L, Fan F, et al. Origins of stokes shift in PbS nanocrystals. Nano Lett. 2017;17(12):7191–7195. doi:10.1021/acs.nanolett.7b01843
  • Liu M, Yao W, Li C, Wu Z, Li L. Tuning emission and stokes shift of CdS quantum dots via copper and indium co-doping. Rsc Adv. 2015;5(1):628–634. doi:10.1039/C4RA11349G
  • Wang J, Liu G, Leung KC, Loffroy R, Lu PX, Wang YX. Opportunities and challenges of fluorescent carbon dots in translational optical imaging. Curr Pharm Des. 2015;21(37):5401–5416. doi:10.2174/1381612821666150917093232
  • Kim JY, Voznyy O, Zhitomirsky D, Sargent EH. 25th anniversary article: colloidal quantum dot materials and devices: a quarter-century of advances. Adv Mater. 2013;25(36):4986–5010. doi:10.1002/adma.201301947
  • Adegoke O, Montaseri H, Nsibande SA, Forbes PBC. Organometallic synthesis, structural and optical properties of CdSe quantum dots passivated with ternary AgZnS alloyed shell. J Lumin. 2021;235:118049. doi:10.1016/j.jlumin.2021.118049
  • Mozafari M, Moztarzadeh F, Seifalian AM, Tayebi L. Self-assembly of PbS hollow sphere quantum dots via gas–bubble technique for early cancer diagnosis. J Lumin. 2013;133:188–193. doi:10.1016/j.jlumin.2011.12.054
  • Pu Y, Cai F, Wang D, Wang J-X, Chen J-F. Colloidal synthesis of semiconductor quantum dots toward large-scale production: a review. Ind Eng Chem Res. 2018;57(6):1790–1802. doi:10.1021/acs.iecr.7b04836
  • Tyrakowski CM, Snee PT. A primer on the synthesis, water-solubilization, and functionalization of quantum dots, their use as biological sensing agents, and present status. Phys Chem Chem Phys. 2014;16(3):837–855. doi:10.1039/C3CP53502A
  • Jing L, Kershaw SV, Li Y, et al. Aqueous based semiconductor nanocrystals. Chem Rev. 2016;116(18):10623–10730. doi:10.1021/acs.chemrev.6b00041
  • Arshad A, Akram R, Iqbal S, et al. Aqueous synthesis of tunable fluorescent, semiconductor CuInS2 quantum dots for bioimaging. Arab J Chem. 2019;12(8):4840–4847. doi:10.1016/j.arabjc.2016.10.002
  • Fernández-Fernández MR, Sot B, Valpuesta JM. Molecular chaperones: functional mechanisms and nanotechnological applications. Nanotechnology. 2016;27(32):324004. doi:10.1088/0957-4484/27/32/324004
  • Kasotakis E, Kostopoulou A, Spuch-Calvar M, et al. Assembly of quantum dots on peptide nanostructures and their spectroscopic properties. Appl Physics A. 2014;116(3):977–985. doi:10.1007/s00339-014-8538-5
  • Wang Q, Ye F, Fang T, et al. Bovine serum albumin-directed synthesis of biocompatible CdSe quantum dots and bacteria labeling. J Colloid Interface Sci. 2011;355(1):9–14. doi:10.1016/j.jcis.2010.11.035
  • Zhou W, Baneyx F. Aqueous, protein-driven synthesis of transition metal-doped zns immuno-quantum dots. ACS Nano. 2011;5(10):8013–8018. doi:10.1021/nn2024896
  • Kalita H, Palaparthy VS, Baghini MS, Aslam M. Electrochemical synthesis of graphene quantum dots from graphene oxide at room temperature and its soil moisture sensing properties. Carbon. 2020;165:9–17. doi:10.1016/j.carbon.2020.04.021
  • Mal J, Nancharaiah YV, van Hullebusch ED, Lens PNL. Metal chalcogenide quantum dots: biotechnological synthesis and applications. Rsc Adv. 2016;6(47):41477–41495. doi:10.1039/C6RA08447H
  • Gallardo C, Monrás JP, Plaza DO, et al. Low-temperature biosynthesis of fluorescent semiconductor nanoparticles (CdS) by oxidative stress resistant Antarctic bacteria. J Biotechnol. 2014;187:108–115. doi:10.1016/j.jbiotec.2014.07.017
  • Drbohlavova J, Adam V, Kizek R, Hubalek J. Quantum dots - characterization, preparation and usage in biological systems. Int J Mol Sci. 2009;10(2):656–673. doi:10.3390/ijms10020656
  • Gu Y, Kuskovsky IL, Fung J, et al. Determination of size and composition of optically active CdZnSe/ZnBeSe quantum dots. Appl Phys Lett. 2003;83(18):3779–3781. doi:10.1063/1.1623941
  • Lees EE, Gunzburg MJ, Nguyen T-L, et al. Experimental determination of quantum dot size distributions, ligand packing densities, and bioconjugation using analytical ultracentrifugation. Nano Lett. 2008;8(9):2883–2890. doi:10.1021/nl801629f
  • Szymanski CJ, Yi H, Liu JL, Wright ER, Payne CK. Imaging intracellular quantum dots: fluorescence microscopy and transmission electron microscopy. Methods Mol Biol. 2013;1026:21–33.
  • Texier I, Josser V. In vivo imaging of quantum dots. Methods Mol Biol. 2009;544:393–406.
  • Sun M, Ma X, Chen X, Sun Y, Cui X, Lin Y. A nanocomposite of carbon quantum dots and TiO2 nanotube arrays: enhancing photoelectrochemical and photocatalytic properties. Rsc Adv. 2014;4(3):1120–1127. doi:10.1039/C3RA45474F
  • Su G, Liu C, Deng Z, Zhao X, Zhou X. Size-dependent photoluminescence of PbS QDs embedded in silicate glasses. Opt Mater Express. 2017;7(7):2194–2207. doi:10.1364/OME.7.002194
  • Bera D, Qian L, Tseng T-K, Holloway PH. Quantum dots and their multimodal applications: a review. Materials. 2010;3(4):2260–2345.
  • Murray CB, Kagan CR, Bawendi MG. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Ann Rev Mater Sci. 2000;30(1):545–610. doi:10.1146/annurev.matsci.30.1.545
  • Pleskova S, Mikheeva E, Gornostaeva E. Using of quantum dots in biology and medicine. In: Saquib Q, Faisal M, Al-Khedhairy AA, Alatar AA, editors. Cellular and Molecular Toxicology of Nanoparticles. Cham: Springer International Publishing; 2018:323–334.
  • Schmidt R, Krasselt C, Göhler C, von Borczyskowski C. The fluorescence intermittency for quantum dots is not power-law distributed: a luminescence intensity resolved approach. ACS Nano. 2014;8(4):3506–3521. doi:10.1021/nn406562a
  • Walling MA, Novak JA, Shepard JRE. Quantum dots for live cell and in vivo imaging. Int J Mol Sci. 2009;10(2):441–491. doi:10.3390/ijms10020441
  • Adan A, Alizada G, Kiraz Y, Baran Y, Nalbant A. Flow cytometry: basic principles and applications. Crit Rev Biotechnol. 2017;37(2):163–176. doi:10.3109/07388551.2015.1128876
  • Gouttefangeas C, Walter S, Welters MJP, Ottensmeier C, van der Burg SH, Chan C. Flow cytometry in cancer immunotherapy: applications, quality assurance, and future. In: Rezaei N, editor. Cancer Immunology: A Translational Medicine Context. Cham: Springer International Publishing; 2020:761–783.
  • Petryayeva E, Algar WR, Medintz IL. Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging. Appl Spectrosc. 2013;67(3):215–252. doi:10.1366/12-06948
  • Wu X, Zhu W. Stability enhancement of fluorophores for lighting up practical application in bioimaging. Chem Soc Rev. 2015;44(13):4179–4184. doi:10.1039/C4CS00152D
  • Cabral Filho PE, Pereira MIA, Fernandes HP, et al. Blood group antigen studies using CdTe quantum dots and flow cytometry. Int J Nanomedicine. 2015;10:4393–4404. doi:10.2147/IJN.S84551
  • Chattopadhyay PK. Chapter 18 - Quantum dot technology in flow cytometry. In: Darzynkiewicz Z, Holden E, Orfao A, Telford W, Wlodkowic D, editors. Methods in Cell Biology. Vol. 102. Academic Press; 2011:463–477.
  • Dolmans DEJGJ, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003;3(5):380–387. doi:10.1038/nrc1071
  • Satrialdi MR, Biju V, Takano Y, Harashima H, Yamada Y. The optimization of cancer photodynamic therapy by utilization of a pi-extended porphyrin-type photosensitizer in combination with MITO-Porter. Chem Commun. 2020;56(7):1145–1148. doi:10.1039/C9CC08563G
  • Ahirwar S, Mallick S, Bahadur D. Photodynamic therapy using graphene quantum dot derivatives. J Solid State Chem. 2020;282:121107. doi:10.1016/j.jssc.2019.121107
  • Łoczechin A, Séron K, Barras A, et al. Functional carbon quantum dots as medical countermeasures to human coronavirus. ACS Appl Mater Interfaces. 2019;11(46):42964–42974. doi:10.1021/acsami.9b15032
  • Sanchez de Araujo H, Ferreira F. Quantum dots and photodynamic therapy in COVID-19 treatment. Lancet Digit Health. 2021;3(4):e78. doi:10.1016/S2589-7500(20)30274-0
  • Bao W, Ma H, Wang N, He Z. pH-sensitive carbon quantum dots−doxorubicin nanoparticles for tumor cellular targeted drug delivery. Polym Adv Technol. 2019;30(11):2664–2673. doi:10.1021/acs.bioconjchem.9b00573
  • Younis MA, Khalil IA, Harashima H. Gene therapy for hepatocellular carcinoma: highlighting the journey from theory to clinical applications. Adv Therapeut. 2020;3(11):2000087.
  • Iannazzo D, Pistone A, Celesti C, et al. A smart nanovector for cancer targeted drug delivery based on graphene quantum dots. Nanomaterials. 2019;9(2):282.
  • Ulusoy M, Jonczyk R, Walter J-G, et al. Aqueous synthesis of PEGylated quantum dots with increased colloidal stability and reduced cytotoxicity. Bioconjug Chem. 2016;27(2):414–426. doi:10.1021/acs.bioconjchem.5b00491
  • Mangeolle T, Yakavets I, Lequeux N, Pons T, Bezdetnaya L, Marchal F. The targeting ability of fluorescent quantum dots to the folate receptor rich tumors. Photodiagnosis Photodyn Ther. 2019;26:150–156. doi:10.1016/j.pdpdt.2019.03.010
  • Zhao Y, Liu S, Li Y, et al. Synthesis and grafting of folate-PEG-PAMAM conjugates onto quantum dots for selective targeting of folate-receptor-positive tumor cells. J Colloid Interface Sci. 2010;350(1):44–50. doi:10.1016/j.jcis.2010.05.035
  • Song EQ, Zhang ZL, Luo QY, Lu W, Shi YB, Pang DW. Tumor cell targeting using folate-conjugated fluorescent quantum dots and receptor-mediated endocytosis. Clin Chem. 2009;55(5):955–963. doi:10.1373/clinchem.2008.113423
  • Abdellatif AAH, Abou-Taleb HA, Abd El Ghany AA, Lutz I, Bouazzaoui A. Targeting of somatostatin receptors expressed in blood cells using quantum dots coated with vapreotide. Saudi Pharm J. 2018;26(8):1162–1169. doi:10.1016/j.jsps.2018.07.004
  • Liu L, Jiang H, Dong J, et al. PEGylated MoS(2) quantum dots for traceable and pH-responsive chemotherapeutic drug delivery. Colloids Surf B Biointerfaces. 2020;185:110590. doi:10.1016/j.colsurfb.2019.110590
  • Zhang LW, Monteiro-Riviere NA. Mechanisms of quantum dot nanoparticle cellular uptake. Toxicol Sci. 2009;110(1):138–155. doi:10.1093/toxsci/kfp087
  • Zhang LW, Bäumer W, Monteiro-Riviere NA. Cellular uptake mechanisms and toxicity of quantum dots in dendritic cells. Nanomedicine. 2011;6(5):777–791. doi:10.2217/nnm.11.73
  • Khalil IA, Kogure K, Akita H, Harashima H. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev. 2006;58(1):32–45. doi:10.1124/pr.58.1.8
  • Matea CT, Mocan T, Tabaran F, et al. Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomedicine. 2017;12:5421–5431. doi:10.2147/IJN.S138624
  • Bhalla N, Jolly P, Formisano N, Estrela P. Introduction to biosensors. Essays Biochem. 2016;60(1):1–8. doi:10.1042/EBC20150001
  • Ma F, Li C-C, Zhang C-Y. Development of quantum dot-based biosensors: principles and applications. J Mater Chem B. 2018;6(39):6173–6190. doi:10.1039/C8TB01869C
  • Ravi P, Ganesan M. Quantum dots as biosensors in the determination of biochemical parameters in xenobiotic exposure and toxins. Anal Sci. 2021;37(5):661–671. doi:10.2116/analsci.20SCR03
  • Zheng G, Li S, Zhang T, et al. Water pollution control and treatment based on quantum dot chemical and biological high-sensitivity sensing. J Sens. 2021;2021:8704363. doi:10.1155/2021/8704363
  • Shen P, Xia Y. Synthesis-modification integration: one-step fabrication of boronic acid functionalized carbon dots for fluorescent blood sugar sensing. Anal Chem. 2014;86(11):5323–5329. doi:10.1021/ac5001338
  • Nideep TK, Ramya M, Sony U, Kailasnath M. MSA capped CdTe quantum dots for pH sensing application. Mater Res Express. 2019;6(10):105002. doi:10.1088/2053-1591/ab35a0
  • Zhang L, Chen L. Fluorescence probe based on hybrid Mesoporous Silica/Quantum Dot/Molecularly imprinted polymer for detection of tetracycline. ACS Appl Mater Interfaces. 2016;8(25):16248–16256. doi:10.1021/acsami.6b04381
  • Ding R, Chen Y, Wang Q, et al. Recent advances in quantum dots-based biosensors for antibiotic detection. J Pharmaceut Anal. 2021. doi:10.1016/j.jpha.2021.08.002
  • Özcan N, Karaman C, Atar N, Karaman O, Yola ML. A novel molecularly imprinting biosensor including graphene quantum dots/Multi-Walled carbon nanotubes composite for interleukin-6 detection and electrochemical biosensor validation. ECS J Solid State Sci Technol. 2020;9(12):121010. doi:10.1149/2162-8777/abd149
  • Wang Y, Zhang Y, Du Z, Wu M, Zhang G. Detection of micrometastases in lung cancer with magnetic nanoparticles and quantum dots. Int J Nanomedicine. 2012;7:2315–2324. doi:10.2147/IJN.S30593
  • Elmizadeh H, Faridbod F, Soleimani M, Ganjali MR, Bardajee GR. Fluorescent apta-nanobiosensors for fast and sensitive detection of digoxin in biological fluids using rGQDs: comparison of two approaches for immobilization of aptamer. Sens Actuators B Chem. 2020;302:127133. doi:10.1016/j.snb.2019.127133
  • Market and Markets. Quantum Dot Market. Available from: https://www.marketsandmarkets.com/Market-Reports/quantum-dots-qd-market-694.html. Accessed March 23, 2022.
  • NANOCO. NANOCO: products and applications. Available from: https://www.nanocotechnologies.com/products-applications/. Accessed March 23, 2022.
  • NNCrystal US Corporation. NN-Labs®. Available from: https://nn-labs.com/pages/about-our-products. Accessed March 23, 2022.
  • QD LASER. QD LASER: illuminating human possibilities. Available from: https://www.qdlaser.com/en/. Accessed March 23, 2022.
  • National Institute of Health (NIH). Quantum dots clinical trials. Available from: https://clinicaltrials.gov/ct2/results?cond=&term=quantum+dots&cntry=&state=&city=&dist=. Accessed December 31, 2021.
  • Abdellatif AA. Topical fluorescent nanoparticles conjugated somatostatin analog for suppression and bioimaging breast cancer. Available from: https://clinicaltrials.gov/ct2/show/NCT04138342. Accessed January 6, 2022.
  • He B. Clinical trails of photoelectrochemical immunosensor for early diagnosis of acute myocardial infarction. https://clinicaltrials.gov/ct2/show/NCT04390490. Accessed January 6, 2022.
  • Moon H, Lee C, Lee W, Kim J, Chae H. Stability of quantum dots. quantum dot films, and quantum dot light-emitting diodes for display applications. Adv Mater. 2019;31(34):1804294.
  • Sabzevari Z, Sahraei R, Jawhar NN, Yazici AF, Mutlugun E, Soheyli E. Long-time stable colloidal Zn–Ag–In–S quantum dots with tunable midgap-involved emission. J Appl Physics. 2021;129(6):063107.
  • Zhang X, Chen Y, Lian L, et al. Stability enhancement of PbS quantum dots by site-selective surface passivation for near-infrared LED application. Nano Res. 2021;14(3):628–634. doi:10.1007/s12274-020-3081-5
  • Ko J, Jeong BG, Chang JH, et al. Chemically resistant and thermally stable quantum dots prepared by shell encapsulation with cross-linkable block copolymer ligands. NPG Asia Mater. 2020;12(1):19. doi:10.1038/s41427-020-0200-4
  • Wang L, Wang Y, Xu T, et al. Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties. Nat Commun. 2014;5(1):5357. doi:10.1038/ncomms6357
  • Yuan Y, Riehle FS, Gu H, Thomann R, Urban G, Krüger M. Critical parameters for the scale-up synthesis of quantum dots. J Nanosci Nanotechnol. 2010;10(9):6041–6045. doi:10.1166/jnn.2010.2564
  • Peng X, Manna L, Yang W, et al. Shape control of CdSe nanocrystals. Nature. 2000;404(6773):59–61. doi:10.1038/35003535
  • Zeissler K. Quantum dot image sensors scale up. Nat Electron. 2021;4(12):861. doi:10.1038/s41928-021-00701-x
  • Ranjbar-Navazi Z, Omidi Y, Eskandani M, Davaran S. Cadmium-free quantum dot-based theranostics. Trends Analyt Chem. 2019;118:386–400. doi:10.1016/j.trac.2019.05.041
  • IDTechEx. Quantum dot materials and technologies 2020–2030: trends, markets, players. Available from: https://www.idtechex.com/en/research-report/quantum-dot-materials-and-technologies-2020-2030-trends-markets-players/654. Accessed March 23, 2022.
  • Chahal S, Macairan J-R, Yousefi N, Tufenkji N, Naccache R. Green synthesis of carbon dots and their applications. Rsc Adv. 2021;11(41):25354–25363. doi:10.1039/D1RA04718C
  • Dhandapani E, Duraisamy N, Mohan Raj R. Green synthesis of carbon quantum dots from food waste. Mater Today. 2020. doi:10.1016/j.matpr.2020.10.025
  • Choi HS, Ipe BI, Misra P, Lee JH, Bawendi MG, Frangioni JV. Tissue- and organ-selective biodistribution of NIR fluorescent quantum dots. Nano Lett. 2009;9(6):2354–2359. doi:10.1021/nl900872r
  • Zdobnova TA, Lebedenko EN, Deyev SМ. Quantum dots for molecular diagnostics of tumors. Acta Naturae. 2011;3(1):29–47. doi:10.32607/20758251-2011-3-1-29-47
  • Choi HS, Liu W, Misra P, et al. Renal clearance of quantum dots. Nat Biotechnol. 2007;25(10):1165–1170. doi:10.1038/nbt1340
  • Hauser PV, Chang H-M, Yanagawa N, Hamon M. Nanotechnology, nanomedicine, and the kidney. Appl Sci. 2021;11(16):7187.
  • Liu J, Yu M, Zhou C, Zheng J. Renal clearable inorganic nanoparticles: a new frontier of bionanotechnology. Mater Today. 2013;16(12):477–486. doi:10.1016/j.mattod.2013.11.003
  • Abdellatif AAH. A plausible way for excretion of metal nanoparticles via active targeting. Drug Dev Ind Pharm. 2020;46(5):744–750. doi:10.1080/03639045.2020.1752710
  • Shen Q, Wang S, Yang N-D, Zhang C, Wu Q, Yu C. Recent development of small-molecule organic fluorophores for multifunctional bioimaging in the second near-infrared window. J Lumin. 2020;225:117338. doi:10.1016/j.jlumin.2020.117338
  • Zheng Q, Juette MF, Jockusch S, et al. Ultra-stable organic fluorophores for single-molecule research. Chem Soc Rev. 2014;43(4):1044–1056. doi:10.1039/C3CS60237K
  • Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Quantum dots versus organic dyes as fluorescent labels. Nat Methods. 2008;5(9):763–775. doi:10.1038/nmeth.1248
  • Hulspas R, Dombkowski D, Preffer F, Douglas D, Kildew-Shah B, Gilbert J. Flow cytometry and the stability of phycoerythrin-tandem dye conjugates. Cytometry A. 2009;75(11):966–972. doi:10.1002/cyto.a.20799
  • Hochreiter B, Kunze M, Moser B, Schmid JA. Advanced FRET normalization allows quantitative analysis of protein interactions including stoichiometries and relative affinities in living cells. Sci Rep. 2019;9(1):8233. doi:10.1038/s41598-019-44650-0
  • Njemini R, Onyema OO, Renmans W, Bautmans I, De Waele M, Mets T. Shortcomings in the application of multicolour flow cytometry in lymphocyte subsets enumeration. Scand J Immunol. 2014;79(2):75–89. doi:10.1111/sji.12142
  • Ferrari BC, Bergquist PL. Quantum dots as alternatives to organic fluorophores for Cryptosporidium detection using conventional flow cytometry and specific monoclonal antibodies: lessons learned. Cytometry A. 2007;71A(4):265–271.
  • Clift MJD, Stone V. Quantum dots: an insight and perspective of their biological interaction and how this relates to their relevance for clinical use. Theranostics. 2012;2(7):668–680. doi:10.7150/thno.4545
  • Lingam MK, Mackie RM, McKay AJ. Intraoperative identification of sentinel lymph node in patients with malignant melanoma. Br J Cancer. 1997;75(10):1505–1508. doi:10.1038/bjc.1997.257
  • Bustos ME, Camargo JJ, Resin Geyer G, Feijó Andrade C. Intraoperative detection of sentinel lymph nodes using Patent Blue V in non-small cell lung cancer. Minerva Chir. 2008;63(1):29–36.
  • Frangioni JV, Kim S-W, Ohnishi S, Kim S, Bawendi MG. Sentinel lymph node mapping with type-II quantum dots. Methods Mol Biol. 2007;374:147–159.
  • Fan H-Y, Yu X-H, Wang K, et al. Graphene quantum dots (GQDs)-based nanomaterials for improving photodynamic therapy in cancer treatment. Eur J Med Chem. 2019;182:111620. doi:10.1016/j.ejmech.2019.111620
  • McHugh KJ, Jing L, Severt SY, et al. Biocompatible near-infrared quantum dots delivered to the skin by microneedle patches record vaccination. Sci transl med. 2019;11(523):eaay7162. doi:10.1126/scitranslmed.aay7162
  • Wang D, Guo L, Zhen Y, Yue L, Xue G, Fu F. AgBr quantum dots decorated mesoporous Bi2WO6 architectures with enhanced photocatalytic activities for methylene blue. J Mater Chem A. 2014;2(30):11716–11727. doi:10.1039/C4TA01444H
  • Babentsov V, Sizov F. Defects in quantum dots of IIB–VI semiconductors. Opto-Electron Rev. 2008;16(3):208–225.
  • Zheng S, Chen J, Johansson EMJ, Zhang X. PbS colloidal quantum dot inks for infrared solar cells. iScience. 2020;23(11):101753. doi:10.1016/j.isci.2020.101753
  • Younis MR, He G, Lin J, Huang P. Recent advances on graphene quantum dots for bioimaging applications. Front Chem. 2020;8:424. doi:10.3389/fchem.2020.00424
  • Ren X, Yang X, Xie G, Luo J. Black phosphorus quantum dots in aqueous ethylene glycol for macroscale superlubricity. ACS Appl Nano Mater. 2020;3(5):4799–4809. doi:10.1021/acsanm.0c00841
  • Meng S, Zhang Y, Wang H, et al. Recent advances on TMDCs for medical diagnosis. Biomaterials. 2021;269:120471. doi:10.1016/j.biomaterials.2020.120471
  • Xu Q, Ma J, Khan W, et al. Highly green fluorescent Nb2C MXene quantum dots. Chem Commun. 2020;56(49):6648–6651. doi:10.1039/D0CC02131H
  • Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011;23(37):4248–4253. doi:10.1002/adma.201102306
  • Xiao C, Zhao Q, Jiang C-S, et al. Perovskite quantum dot solar cells: mapping interfacial energetics for improving charge separation. Nano Energy. 2020;78:105319. doi:10.1016/j.nanoen.2020.105319
  • Nasrollahi F, Koh YR, Chen P, Varshosaz J, Khodadadi AA, Lim S. Targeting graphene quantum dots to epidermal growth factor receptor for delivery of cisplatin and cellular imaging. Mater Sci Eng C Mater Biol Appl. 2019;94:247–257. doi:10.1016/j.msec.2018.09.020
  • Tang J, Huang N, Zhang X, et al. Aptamer-conjugated PEGylated quantum dots targeting epidermal growth factor receptor variant III for fluorescence imaging of glioma. Int J Nanomedicine. 2017;12:3899–3911. doi:10.2147/IJN.S133166
  • Zu R, Fang X, Lin Y, et al. Peptide-enabled receptor-binding-quantum dots for enhanced detection and migration inhibition of cancer cells. J Biomater Sci Polym Ed. 2020;31(12):1604–1621. doi:10.1080/09205063.2020.1764191
  • Kaushik NK, Kaushik N, Wahab R, et al. Cold atmospheric plasma and gold quantum dots exert dual cytotoxicity mediated by the cell receptor-activated apoptotic pathway in glioblastoma cells. Cancers. 2020;12(2):457. doi:10.3390/cancers12020457
  • Mazumdar A, Haddad Y, Milosavljevic V, et al. Peptide-carbon quantum dots conjugate, derived from human retinoic acid receptor responder protein 2, against antibiotic-resistant gram positive and gram negative pathogenic bacteria. Nanomaterials. 2020;10(2):325. doi:10.3390/nano10020325
  • Chen S, Imoukhuede PI. Multiplexing angiogenic receptor quantification via quantum dots. Anal Chem. 2019;91(12):7603–7612. doi:10.1021/acs.analchem.9b00238
  • Zhang Y, Zhao N, Qin Y, et al. Affibody-functionalized Ag2S quantum dots for photoacoustic imaging of epidermal growth factor receptor overexpressed tumors. Nanoscale. 2018;10(35):16581–16590. doi:10.1039/C8NR02556H
  • Zhang JH, Sun T, Niu A, et al. Perturbation effect of reduced graphene oxide quantum dots (rGOQDs) on aryl hydrocarbon receptor (AhR) pathway in zebrafish. Biomaterials. 2017;133:49–59. doi:10.1016/j.biomaterials.2017.04.026
  • Labrecque S, Sylvestre JP, Marcet S, et al. Hyperspectral multiplex single-particle tracking of different receptor subtypes labeled with quantum dots in live neurons. J Biomed Opt. 2016;21(4):46008. doi:10.1117/1.JBO.21.4.046008