363
Views
8
CrossRef citations to date
0
Altmetric
Original Research

Photocatalytic Cu2WS4 Nanocrystals for Efficient Bacterial Killing and Biofilm Disruption

ORCID Icon, , ORCID Icon, ORCID Icon, , , & ORCID Icon show all
Pages 2735-2750 | Published online: 22 Jun 2022

References

  • Iwase T, Uehara Y, Shinji H, et al. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature. 2010;465(7296):346–349. doi:10.1038/nature09074
  • Foster TJ, Geoghegan JA, Ganesh VK, et al. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol. 2014;12(1):49–62. doi:10.1038/nrmicro3161
  • Li Y, Xiu W, Yang K, et al. A multifunctional Fenton nanoagent for microenvironment-selective anti-biofilm and anti-inflammatory therapy. Materials Horizons. 2021;8(4):1264–1271. doi:10.1039/D0MH01921F
  • Wang Z, Liu X, Duan Y, et al. Infection microenvironment-related antibacterial nanotherapeutic strategies. Biomaterials. 2022;280:121249. doi:10.1016/j.biomaterials.2021.121249
  • Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8(9):623–633. doi:10.1038/nrmicro2415
  • Wani FA, Bandy A, Alenzi MJS, et al. Resistance patterns of gram-negative bacteria recovered from clinical specimens of intensive care patients. Microorganisms. 2021;9(11):2246. doi:10.3390/microorganisms9112246
  • Xiu W, Shan J, Yang K, et al. Recent development of nanomedicine for the treatment of bacterial biofilm infections. View. 2021;2(1):20200065. doi:10.1002/VIW.20200065
  • Wang LS, Gupta A, Rotello VM. Nanomaterials for the treatment of bacterial biofilms. ACS Infect Dis. 2016;2(1):3–4. doi:10.1021/acsinfecdis.5b00116
  • Lv X, Zhang J, Yang D, et al. Recent advances in pH-responsive nanomaterials for anti-infective therapy. J Mater Chem B. 2020;8(47):10700–10711. doi:10.1039/D0TB02177F
  • Cao C, Zhang T, Yang N, et al. POD nanozyme optimized by charge separation engineering for light/pH activated bacteria catalytic/photodynamic therapy. Signal Transduct Target Ther. 2022;7(1):86. doi:10.1038/s41392-022-00900-8
  • Shan J, Zhang X, Kong B, et al. Coordination polymer nanozymes-integrated colorimetric microneedle patches for intelligent wound infection management. Chem Eng J. 2022;444:136640. doi:10.1016/j.cej.2022.136640
  • Yang Y, Wang C, Wang N, et al. Photogenerated reactive oxygen species and hyperthermia by Cu3SnS4 nanoflakes for advanced photocatalytic and photothermal antibacterial therapy. J Nanobiotechnology. 2022;20(1):195. doi:10.1186/s12951-022-01403-y
  • Wang W, Li G, Xia D, et al. Photocatalytic nanomaterials for solar-driven bacterial inactivation: recent progress and challenges. Environ Sci Nano. 2017;4(4):782–799.
  • Liu C, Kong D, Hsu P-C, et al. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light. Nat Nanotechnol. 2016;11(12):1098–1104. doi:10.1038/nnano.2016.138
  • Tao J, Luttrell M, Fau-Batzill T, Batzill M. A two-dimensional phase of TiO2 with a reduced bandgap. Nat Chem. 2011;3(4):296–300. doi:10.1038/nchem.1006
  • Ozel F, Aslan E, Sarilmaz A, et al. Hydrogen evolution catalyzed by Cu2WS4 at liquid-liquid interfaces. ACS Appl Mater Interfaces. 2016;8(39):25881–25887. doi:10.1021/acsami.6b05582
  • Li N, Liu M, Zhou Z, et al. Charge separation in facet-engineered chalcogenide photocatalyst: a selective photocorrosion approach. Nanoscale. 2014;6(16):9695–9702. doi:10.1039/C4NR02068E
  • Shan J, Li X, Yang K, et al. Efficient bacteria killing by Cu(2)WS(4) nanocrystals with enzyme-like properties and bacteria-binding ability. ACS Nano. 2019;13(12):13797–13808. doi:10.1021/acsnano.9b03868
  • Nguyen TH, Cheung GYC, Rigby KM, et al. Rapid pathogen-specific recruitment of immune effector cells in the skin by secreted toxins. Nat Microbiol. 2022;7(1):62–72. doi:10.1038/s41564-021-01012-9
  • de Sousa TA-O, Hébraud M, Dapkevicius MLNE, et al. Genomic and metabolic characteristics of the pathogenicity in Pseudomonas aeruginosa. Int J Mol Sci. 2021;22(23):12892. doi:10.3390/ijms222312892
  • Dong H, Liu H, Zhou N, et al. Surface modified techniques and emerging functional coating of dental implants. Coatings. 2020;10(11):1012. doi:10.3390/coatings10111012
  • Cao C, Ge W, Yin J, et al. Mesoporous silica supported silver-bismuth nanoparticles as photothermal agents for skin infection synergistic antibacterial therapy. Small. 2020;16(24):e2000436. doi:10.1002/smll.202000436
  • Blackman LD, Qu Y, Cass P, et al. Approaches for the inhibition and elimination of microbial biofilms using macromolecular agents. Chem Soc Rev. 2021;50(3):1587–1616. doi:10.1039/D0CS00986E
  • Dong H, Wen Z-F, Chen L, et al. Polyethyleneimine modification of aluminum hydroxide nanoparticle enhances antigen transportation and cross-presentation of dendritic cells. Int J Nanomedicine. 2018;13:3353–3365. doi:10.2147/IJN.S164097
  • Park S-M, Aalipour A, Vermesh O, et al. Towards clinically translatable in vivo nanodiagnostics. Nat Rev Mater. 2017;2(5):17014. doi:10.1038/natrevmats.2017.14
  • Liu H, Dong H, Zhou N, et al. SPIO enhance the cross-presentation and migration of DCs and anionic SPIO influence the nanoadjuvant effects related to interleukin-1beta. Nanoscale Res Lett. 2018;13(1):409. doi:10.1186/s11671-018-2802-0
  • Xiu W, Gan S, Wen Q, et al. Biofilm microenvironment-responsive nanotheranostics for dual-mode imaging and hypoxia-relief-enhanced photodynamic therapy of bacterial infections. Research. 2020;2020:9426453. doi:10.34133/2020/9426453
  • Shi LA-O, Zhao Y, Xie Q, et al. Moldable hyaluronan hydrogel enabled by dynamic metal-bisphosphonate coordination chemistry for wound healing. Adv Healthc Mater. 2018;7(5):1700973. doi:10.1002/adhm.201700973
  • Talemi AK, Jalali A, Mohammadi A, et al. The Fe3O4 nanoparticles functionalized by glutamic acid and conjugated with thiosemicarbazide decreases the expression of icaA and icaD biofilm genes in methicillin-resistant Staphylococcus aureus isolates. Gene Rep. 2022;26:101515. doi:10.1016/j.genrep.2022.101515
  • Montazeri A, Salehzadeh A, Zamani H. Effect of silver nanoparticles conjugated to thiosemicarbazide on biofilm formation and expression of intercellular adhesion molecule genes, icaAD, in Staphylococcus aureus. Folia Microbiol. 2020;65(1):153–160. doi:10.1007/s12223-019-00715-1
  • Honarmand T, Sharif AP, Salehzadeh A, et al. Does conjugation of silver nanoparticles with thiosemicarbazide increase their antibacterial properties? Microb Drug Resist. 2022;28(3):293–305. doi:10.1089/mdr.2020.0557
  • Li X, Shan J, Zhang W, et al. Recent advances in synthesis and biomedical applications of two-dimensional transition metal dichalcogenide nanosheets. Small. 2017;13(5):1602660. doi:10.1002/smll.201602660
  • Wang Q, Zhang Y, Li Q, et al. Therapeutic applications of antimicrobial silver-based biomaterials in dentistry. Int J Nanomed. 2022;17:443–462. doi:10.2147/IJN.S349238
  • Zhang Y, Xiu W, Gan S, et al. Antibody-functionalized MoS2 nanosheets for targeted photothermal therapy of staphylococcus aureus focal infection. Front Bioeng Biotechnol. 2019;7:218. doi:10.3389/fbioe.2019.00218
  • Wainwright M, Maisch T, Nonell S, et al. Photoantimicrobials-are we afraid of the light? Lancet Infect Dis. 2017;17(2):e49–e55. doi:10.1016/S1473-3099(16)30268-7
  • Wu S, Xu C, Zhu Y, et al. Biofilm‐sensitive photodynamic nanoparticles for enhanced penetration and antibacterial efficiency. Adv Funct Mater. 2021;31(33):2103591. doi:10.1002/adfm.202103591
  • Shan J, Yang K, Xiu W, et al. Cu2MoS4 nanozyme with NIR-II light enhanced catalytic activity for efficient eradication of multidrug-resistant bacteria. Small. 2020;16(40):e2001099. doi:10.1002/smll.202001099
  • Peng D, Wang Y, Shi H, et al. Fabrication of novel Cu2WS4/NiTiO3 heterostructures for efficient visible-light photocatalytichydrogen evolution and pollutant degradation. J Colloid Interface Sci. 2022;613:194–206. doi:10.1016/j.jcis.2021.10.179
  • Jia Q, Zhang YC, Li J, et al. Hydrothermal synthesis of Cu2WS4 as a visible-light-activated photocatalyst in the reduction of aqueous Cr(VI). Mater Lett. 2014;117:24–27. doi:10.1016/j.matlet.2013.11.110
  • Sun H, Gao N, Dong K, et al. Graphene quantum dots-band-aids used for wound disinfection. ACS Nano. 2014;8(6):6202–6210. doi:10.1021/nn501640q
  • Idrees M, Sawant S, Karodia N, et al. Staphylococcus aureus biofilm: morphology, genetics, pathogenesis and treatment strategies. Int J Environ Res Public Health. 2021;18(14):7602. doi:10.3390/ijerph18147602
  • Coimbra AA-O, Miguel S, Ribeiro M, et al. Thymus zygis essential oil: phytochemical characterization, bioactivity evaluation and synergistic effect with antibiotics against Staphylococcus aureus. Antibiotics. 2022;11(2):146. doi:10.3390/antibiotics11020146
  • Prażmo EJ, Godlewska RA, Mielczarek AB. Effectiveness of repeated photodynamic therapy in the elimination of intracanal Enterococcus faecalis biofilm: an in vitro study. Lasers Med Sci. 2017;32(3):655–661. doi:10.1007/s10103-017-2164-3
  • Yuwen L, Sun Y, Tan G, et al. MoS2@polydopamine-Ag nanosheets with enhanced antibacterial activity for effective treatment of Staphylococcus aureus biofilms and wound infection. Nanoscale. 2018;10(35):16711–16720. doi:10.1039/C8NR04111C