275
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Airspace Dimension Assessment with Nanoparticles (AiDA) in Comparison to Established Pulmonary Function Tests

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 2777-2790 | Published online: 25 Jun 2022

References

  • Soriano JB, Kendrick PJ, Paulson KR, et al. Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet Respir Med. 2020;8(6):585–596. doi:10.1016/S2213-2600(20)30105-3
  • Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3(11):e442. doi:10.1371/journal.pmed.0030442
  • Asia Pacific CRG. Global initiative for chronic obstructive lung disease strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease: an Asia-Pacific perspective. Respirology. 2005;10(1):9–17. doi:10.1111/j.1440-1843.2005.00692.x
  • Tan WC. The global initiative for chronic obstructive lung disease: gold standards and the Asia-Pacific perspective. Respirology. 2002;7(1):1–2. doi:10.1046/j.1440-1843.2002.00371.x
  • Dai Z, Ma Y, Zhan Z, Chen P, Chen Y. Analysis of diagnostic delay and its influencing factors in patients with chronic obstructive pulmonary disease: a cross-sectional study. Sci Rep. 2021;11(1):14213. doi:10.1038/s41598-021-93499-9
  • Walters JA, Walters EH, Nelson M, et al. Factors associated with misdiagnosis of COPD in primary care. Prim Care Respir J. 2011;20(4):396–402. doi:10.4104/pcrj.2011.00039
  • Johns DP, Walters JAE, Walters EH. Diagnosis and early detection of COPD using spirometry. J Thorac Dis. 2014;6(11):1557–1569. doi:10.3978/j.issn.2072-1439.2014.08.18
  • McLean A, Warren PM, Gillooly M, MacNee W, Lamb D. Microscopic and macroscopic measurements of emphysema: relation to carbon monoxide gas transfer. Thorax. 1992;47(3):144–149. doi:10.1136/thx.47.3.144
  • Madani A, Zanen J, Maertelaer V, Gevenois PA. Pulmonary emphysema: objective quantification at multi–detector row CT—comparison with macroscopic and microscopic morphometry. Radiology. 2006;238(3):1036–1043. doi:10.1148/radiol.2382042196
  • Marrades RM, Diaz O, Roca J, et al. Adjustment of DLCO for hemoglobin concentration. Am J Respir Crit Care Med. 1997;155(1):236–241. doi:10.1164/ajrccm.155.1.9001318
  • den Harder AM, de Boer E, Lagerweij SJ, et al. Emphysema quantification using chest CT: influence of radiation dose reduction and reconstruction technique. Eur Radiol Exp. 2018;2(1):30. doi:10.1186/s41747-018-0064-3
  • Goldman MD. Clinical application of forced oscillation. Pulm Pharmacol Ther. 2001;14(5):341–350. doi:10.1006/pupt.2001.0310
  • King GG, Bates J, Berger KI, et al. Technical standards for respiratory oscillometry. Eur Respir J. 2020;55(2):1900753. doi:10.1183/13993003.00753-2019
  • Nikkhah M, Amra B, Eshaghian A, et al. Comparison of impulse oscillometry system and spirometry for diagnosis of obstructive lung disorders. Tanaffos. 2011;10(1):19–25.
  • Frantz S, Nihlén U, Dencker M, Engström G, Löfdahl CG, Wollmer P. Impulse oscillometry may be of value in detecting early manifestations of COPD. Respir Med. 2012;106(8):1116–1123. doi:10.1016/j.rmed.2012.04.010
  • Oostveen E, MacLeod D, Lorino H, et al. The forced oscillation technique in clinical practice: methodology, recommendations and future developments. Eur Respir J. 2003;22(6):1026–1041. doi:10.1183/09031936.03.00089403
  • Saam BT, Yablonskiy DA, Kodibagkar VD, et al. MR imaging of diffusion of (3) He gas in healthy and diseased lungs. Magn Reson Med. 2000;44(2):174–179. doi:10.1002/1522-2594(200008)44:2<174::
  • Kaushik SS, Cleveland ZI, Cofer GP, et al. Diffusion-weighted hyperpolarized 129Xe MRI in healthy volunteers and subjects with chronic obstructive pulmonary disease. Magn Reson Med. 2011;65(4):1154–1165. doi:10.1002/mrm.22697
  • Jakobsson J, Wollmer P, Löndahl J. Charting the human respiratory tract with airborne nanoparticles: evaluation of the airspace dimension assessment technique. BMC J Appl Physiol. 2018;125(6):1832–1840. doi:10.1152/japplphysiol.00410.2018
  • Jakobsson JK, Aaltonen HL, Nicklasson H, et al. Altered deposition of inhaled nanoparticles in subjects with chronic obstructive pulmonary disease. BMC Pulm Med. 2018;18(1):129. doi:10.1186/s12890-018-0697-2
  • Jakobsson JKF, Hedlund J, Kumlin J, Wollmer P, Löndahl J. A new method for measuring lung deposition efficiency of airborne nanoparticles in a single breath. Article. Sci Rep. 2016;6:36147. doi:10.1038/srep36147
  • Londahl J, Jakobsson JKF, Broday DM, Aaltonen HL, Wollmer P. Do nanoparticles provide a new opportunity for diagnosis of distal airspace disease? Int J Nanomed. 2017;12:41–51. doi:10.2147/Ijn.S121369
  • Petersson-Sjögren M, Chan H-F, Collier GJ, et al. Airspace Dimension Assessment (AiDA) by inhaled nanoparticles: benchmarking with hyperpolarised 129Xe diffusion-weighted lung MRI. Sci Rep. 2021;11(1):4721. doi:10.1038/s41598-021-83975-7
  • Aaltonen HL, Petersson Sjögren M, Jakobsson JKF, et al. Airspace dimension assessment with nanoparticles as a proposed biomarker for emphysema. Thorax. 2021;76:1040–1043. doi:10.1136/thoraxjnl-2020-214523
  • Aaltonen H, Jakobsson J, Diaz S, et al. Deposition of inhaled nanoparticles is reduced in subjects with COPD and correlates with the extent of emphysema: proof of concept for a novel diagnostic technique. Clin Physiol Funct Imaging. 2018;38(6):1008–1014. doi:10.1111/cpf.12517
  • Aaltonen HL, Kindvall SS, Jakobsson JK, et al. Airspace dimension assessment with nanoparticles reflects lung density as quantified by MRI. Int J Nanomed. 2018;13:2989. doi:10.2147/IJN.S160331
  • Bergström G, Berglund G, Blomberg A, et al. The Swedish CArdioPulmonary bioimage study: objectives and design. J Intern Med. 2015;278(6):645–659. doi:10.1111/joim.12384
  • Miller MR, Crapo R, Hankinson J, et al. General considerations for lung function testing. Eur Respir J. 2005;26(1):153–161. doi:10.1183/09031936.05.00034505
  • Miller MR, Hankinson J, Brusasco V, et al. Standardisation of spirometry. Eur Respir J. 2005;26(2):319–338. doi:10.1183/09031936.05.00034805
  • Wollmer P, Tufvesson E, Wennersten A, et al. Within-session reproducibility of forced oscillometry. Clin Physiol Funct Imaging. 2021;41(5):401–407. doi:10.1111/cpf.12706
  • Wang R, Sui X, Schoepf UJ, et al. Ultralow-radiation-dose chest CT: accuracy for lung densitometry and emphysema detection. AJR Am J Roentgenol. 2015;204(4):743–749. doi:10.2214/ajr.14.13101
  • Weibel ER, Sapoval B, Filoche M. Design of peripheral airways for efficient gas exchange. Respir Physiol Neurobiol. 2005;148(1–2):3–21. doi:10.1016/j.resp.2005.03.005
  • Haefeli-Bleuer B, Weibel ER. Morphometry of the human pulmonary acinus. Anat Rec. 1988;220(4):401–414. doi:10.1002/ar.1092200410
  • Gillooly M, Lamb D. Airspace size in lungs of lifelong non-smokers: effect of age and sex. Thorax. 1993;48(1):39–43. doi:10.1136/thx.48.1.39
  • Lehnigk B, Schleiss M, Brand P, Heyder J, Magnussen H, Jorres RA. Aerosol-derived airway morphometry (ADAM) in patients with lung emphysema diagnosed by computed tomography–reproducibility, diagnostic information and modelling. Eur J Med Res. 2007;12(2):74–83.
  • Brand P, Rieger C, Beinert T, Heyder J. Aerosol derived airway morphometry in healthy subjects. Eur Respir J. 1995;8(10):1639–1646. doi:10.1183/09031936.95.08101639
  • Löndahl J, Möller W, Pagels JH, Kreyling WG, Swietlicki E, Schmid O. Measurement techniques for respiratory tract deposition of airborne nanoparticles: a critical review. J Aerosol Med Pulm Drug Deliv. 2014;27(4):229–254. doi:10.1089/jamp.2013.1044
  • Putaud JP, Van Dingenen R, Alastuey A, et al. A European aerosol phenomenology – 3: physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmos Environ. 2010;44(10):1308–1320. doi:10.1016/j.atmosenv.2009.12.011
  • Kumar P, Morawska L, Birmili W, et al. Ultrafine particles in cities. Environ Int. 2014;66:1–10. doi:10.1016/j.envint.2014.01.013
  • Sarlo K, Blackburn KL, Clark ED, et al. Tissue distribution of 20 nm, 100 nm and 1000 nm fluorescent polystyrene latex nanospheres following acute systemic or acute and repeat airway exposure in the rat. Toxicology. 2009;263(2–3):117–126. doi:10.1016/j.tox.2009.07.002
  • Agnew JE, Bateman JR, Pavia D, Clarke SW. A model for assessing bronchial mucus transport. J Nucl Med. 1984;25(2):170–176.
  • Agnew JE, Pavia D, Clarke SW. Factors affecting the ‘alveolar deposition’ of 5 microns inhaled particles in healthy subjects. Clin Phys Physiol Meas. 1985;6(1):27–36. doi:10.1088/0143-0815/6/1/003
  • van Hengstum M, Festen J, Buijs W, van den Broek W, Corstens F. Variability of tracheobronchial clearance in healthy non-smoking subjects. Respiration. 1989;56(1–2):94–102. doi:10.1159/000195783
  • Becquemin MH, Swift DL, Bouchikhi A, Roy M, Teillac A. Particle deposition and resistance in the noses of adults and children. Eur Respir J. 1991;4(6):694–702.
  • Darquenne C, West JB, Prisk GK. Deposition and dispersion of 1-μm aerosol boluses in the human lung: effect of micro- and hypergravity. J Appl Physiol. 1998;85(4):1252–1259. doi:10.1152/jappl.1998.85.4.1252
  • Wiebert P, Sanchez-Crespo A, Seitz J, et al. Negligible clearance of ultrafine particles retained in healthy and affected human lungs. Eur Respir J. 2006;28(2):286–290. doi:10.1183/09031936.06.00103805
  • Kreyling WG, Semmler M, Erbe F, et al. TRANSLOCATION OF ULTRAFINE INSOLUBLE IRIDIUM PARTICLES FROM LUNG EPITHELIUM TO EXTRAPULMONARY ORGANS IS SIZE DEPENDENT BUT VERY LOW. J Toxicol Environ Health A. 2002;65(20):1513–1530. doi:10.1080/00984100290071649
  • de Bruijne K, Ebersviller S, Sexton KG, et al. Design and testing of Electrostatic Aerosol in Vitro Exposure System (EAVES): an alternative exposure system for particles. Inhal Toxicol. 2009;21(2):91–101. doi:10.1080/08958370802166035