218
Views
1
CrossRef citations to date
0
Altmetric
Review

How Nanotechniques Could Vitalize the O-GlcNAcylation-Targeting Approach for Cancer Therapy

ORCID Icon, , , &
Pages 1829-1841 | Published online: 24 Apr 2022

References

  • Torres CR, Hart GW. Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J Biol Chem. 1984;259(5):3308–3317. doi:10.1016/S0021-9258(17)43295-9
  • Yang X, Qian K. Protein O-GlcNAcylation: emerging mechanisms and functions. Nat Rev Mol Cell Biol. 2017;18(7):452–465. doi:10.1038/nrm.2017.22
  • Matsuura A, Ito M, Sakaidani Y, et al. O-Linked N-Acetylglucosamine is present on the extracellular domain of Notch receptors. J Biol Chem. 2008;283(51):35486–35495. doi:10.1074/jbc.M806202200
  • Ogawa M, Senoo Y, Ikeda K, Takeuchi H, Okajima T. Structural divergence in O-GlcNAc Glycans displayed on epidermal growth factor-like repeats of mammalian Notch1. Molecules. 2018;23(7):1745. doi:10.3390/molecules23071745
  • Stateva SR, Villalobo A. O-GlcNAcylation of the human epidermal growth factor receptor. Org Biomol Chem. 2015;13(30):8196–8204. doi:10.1039/C5OB00443H
  • Wang L, Chen S, Zhang Z, et al. Suppressed OGT expression inhibits cell proliferation while inducing cell apoptosis in bladder cancer. BMC Cancer. 2018;18(1):1141. doi:10.1186/s12885-018-5033-y
  • Jang TJ. Differential membranous E-cadherin expression, cell proliferation and O-GlcNAcylation between primary and metastatic nodal lesion in colorectal cancer. Pathol Res Pract. 2016;212(2):113–119. doi:10.1016/j.prp.2015.12.003
  • Qian K, Wang S, Fu M, et al. Transcriptional regulation of O-GlcNAc homeostasis is disrupted in pancreatic cancer. J Biol Chem. 2018;293(36):13989–14000. doi:10.1074/jbc.RA118.004709
  • Chiaradonna F, Ricciardiello F, Palorini R. The nutrient-sensing hexosamine biosynthetic pathway as the Hub of cancer metabolic rewiring. Cells. 2018;7(6):53. doi:10.3390/cells7060053
  • Decourcelle A, Very N, Djouina M, et al. O-GlcNAcylation links nutrition to the epigenetic downregulation of UNC5A during colon carcinogenesis. Cancers. 2020;12(11):3168. doi:10.3390/cancers12113168
  • Akella NM, Ciraku L, Reginato MJ. Fueling the fire: emerging role of the hexosamine biosynthetic pathway in cancer. BMC Biol. 2019;17(1):52. doi:10.1186/s12915-019-0671-3
  • Ferrer CM, Sodi VL, Reginato MJ. O-GlcNAcylation in cancer biology: linking metabolism and signaling. J Mol Biol. 2016;428(16):3282–3294. doi:10.1016/j.jmb.2016.05.028
  • Itkonen HM, Urbanucci A, Martin SE, et al. High OGT activity is essential for MYC-driven proliferation of prostate cancer cells. Theranostics. 2019;9(8):2183–2197. doi:10.7150/thno.30834
  • Zhu Y, Hart GW. Targeting O-GlcNAcylation to develop novel therapeutics. Mol Aspects Med. 2021;79:100885. doi:10.1016/j.mam.2020.100885
  • Ju Kim E. O-GlcNAc transferase: structural characteristics, catalytic mechanism and small-molecule inhibitors. ChemBioChem. 2020;21(21):3026–3035. doi:10.1002/cbic.202000194
  • Franco Y, Vaidya T, Ait-Oudhia S. Anticancer and cardio-protective effects of liposomal doxorubicin in the treatment of breast cancer. Breast Cancer Targets Ther. 2018;10:131–141.
  • Hrkach J, Von Hoff D, Mukkaram Ali M, et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med. 2012;4(128):128ra139. doi:10.1126/scitranslmed.3003651
  • Bloise N, Okkeh M, Restivo E, Della Pina C, Visai L. Targeting the “sweet side” of tumor with Glycan-binding molecules conjugated-nanoparticles: implications in cancer therapy and diagnosis. Nanomaterials. 2021;11(2):289. doi:10.3390/nano11020289
  • Jin L, Yuan F, Dai G, et al. Blockage of O-linked GlcNAcylation induces AMPK-dependent autophagy in bladder cancer cells. Cell Mol Biol Lett. 2020;25:17. doi:10.1186/s11658-020-00208-x
  • Asthana A, Ramakrishnan P, Vicioso Y, Zhang K, Parameswaran R. Hexosamine biosynthetic pathway inhibition leads to AML cell differentiation and cell death. Mol Cancer Ther. 2018;17(10):2226–2237. doi:10.1158/1535-7163.MCT-18-0426
  • Lemberg KM, Vornov JJ, Rais R, Slusher BS. We’re not “DON” yet: optimal dosing and prodrug delivery of 6-Diazo-5-oxo-L-norleucine. Mol Cancer Ther. 2018;17(9):1824–1832. doi:10.1158/1535-7163.MCT-17-1148
  • Ricciardiello F, Votta G, Palorini R, et al. Inhibition of the hexosamine biosynthetic pathway by targeting PGM3 causes breast cancer growth arrest and apoptosis. Cell Death Dis. 2018;9(3):377. doi:10.1038/s41419-018-0405-4
  • Borodkin VS, Schimpl M, Gundogdu M, et al. Bisubstrate UDP-peptide conjugates as human O-GlcNAc transferase inhibitors. Biochem J. 2014;457(3):497–502. doi:10.1042/BJ20131272
  • Jaskiewicz NM, Townson DH. Hyper-O-GlcNAcylation promotes epithelial-mesenchymal transition in endometrial cancer cells. Oncotarget. 2019;10(30):2899–2910. doi:10.18632/oncotarget.26884
  • Chariou PL, Ortega-Rivera OA, Steinmetz NF. Nanocarriers for the delivery of medical, veterinary, and agricultural active ingredients. ACS Nano. 2020;14(3):2678–2701. doi:10.1021/acsnano.0c00173
  • Almeida B, Nag OK, Rogers KE, Delehanty JB. Recent progress in bioconjugation strategies for liposome-mediated drug delivery. Molecules. 2020;25(23):5672. doi:10.3390/molecules25235672
  • Gelderblom H, Verweij J, Nooter K, Sparreboom A. Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer. 2001;37(13):1590–1598. doi:10.1016/S0959-8049(01)00171-X
  • An H-W, Mamuti M, Wang X, et al. Rationally designed modular drug delivery platform based on intracellular peptide self-assembly. Exploration. 2021;1(2):20210153. doi:10.1002/EXP.20210153
  • Mei H, Cai S, Huang D, Gao H, Cao J, He B. Carrier-free nanodrugs with efficient drug delivery and release for cancer therapy: from intrinsic physicochemical properties to external modification. Bioact Mater. 2021;8:220–240. doi:10.1016/j.bioactmat.2021.06.035
  • Liu Y, Zhu S, Gu Z, Chen C, Zhao Y. Toxicity of manufactured nanomaterials. Particuology. 2022;69:31–48. doi:10.1016/j.partic.2021.11.007
  • Wang X, Cui X, Zhao Y, Chen C. Nano-bio interactions: the implication of size-dependent biological effects of nanomaterials. Sci China Life Sci. 2020;63(8):1168–1182. doi:10.1007/s11427-020-1725-0
  • Calvaresi EC, Hergenrother PJ. Glucose conjugation for the specific targeting and treatment of cancer. Chem Sci. 2013;4(6):2319–2333. doi:10.1039/c3sc22205e
  • Xu B, Zeng M, Zeng J, Feng J, Yu L. Meta-analysis of clinical trials comparing the efficacy and safety of liposomal cisplatin versus conventional nonliposomal cisplatin in nonsmall cell lung cancer (NSCLC) and squamous cell carcinoma of the head and neck (SCCHN). Medicine. 2018;97(46):e13169–e13169. doi:10.1097/MD.0000000000013169
  • Tashima Y, Stanley P. Antibodies that detect O-linked β-D-N-acetylglucosamine on the extracellular domain of cell surface glycoproteins. J Biol Chem. 2014;289(16):11132–11142. doi:10.1074/jbc.M113.492512
  • Barua R, Mizuno K, Tashima Y, et al. Bioinformatics and functional analyses implicate potential roles for EOGT and L-fringe in pancreatic cancers. Molecules. 2021;26(4):882. doi:10.3390/molecules26040882
  • Wang L, Chen S, Zhang J, et al. Suppressed OGT expression inhibits cell proliferation and modulates EGFR expression in renal cell carcinoma. Cancer Manag Res. 2019;11:2215–2223. doi:10.2147/CMAR.S190642
  • Zhu Q, Yi W. Chemistry-assisted proteomic profiling of O-GlcNAcylation. Front Chem. 2021;9:702260. doi:10.3389/fchem.2021.702260
  • Lochner N, Pittner F, Wirth M, Gabor F. Wheat germ agglutinin binds to the epidermal growth factor receptor of artificial Caco-2 membranes as detected by silver nanoparticle enhanced fluorescence. Pharm Res. 2003;20(5):833–839. doi:10.1023/A:1023406224028
  • de Fátima Menegoci Eugênio P, Assunção NA, Sciandra F, Aquino A, Brancaccio A, Carrilho E. Quantification, 2DE analysis and identification of enriched glycosylated proteins from mouse muscles: difficulties and alternatives. Electrophoresis. 2016;37:321–334. doi:10.1002/elps.201500362
  • Machon O, Baldini SF, Ribeiro JP, et al. Recombinant fungal lectin as a new tool to investigate O-GlcNAcylation processes. Glycobiology. 2017;27(2):123–128. doi:10.1093/glycob/cww105
  • Audfray A, Beldjoudi M, Breiman A, et al. A recombinant fungal lectin for labeling truncated Glycans on human cancer cells. PLoS One. 2015;10(6):22. doi:10.1371/journal.pone.0128190
  • Liu W, Han G, Yin Y, et al. AANL (Agrocybe aegerita lectin 2) is a new facile tool to probe for O-GlcNAcylation. Glycobiology. 2018;28(6):363–373. doi:10.1093/glycob/cwy029
  • Su Y, Ye X, Xu B, et al. CBS homogenization mutation strategy narrows the glycan binding profile of a GlcNAc-specific lectin AANL. Glycobiology. 2020;30(3):159–173. doi:10.1093/glycob/cwz089
  • Mukwaya V, Zhang PP, Guo HZ, et al. Lectin-Glycan-mediated nanoparticle docking as a step toward programmable membrane catalysis and adhesion in synthetic protocells. ACS Nano. 2020;14(7):7899–7910. doi:10.1021/acsnano.0c02127
  • Duan XY, Cheng YF, Sang F, et al. Enhanced targeting function and anti-colon cancer efficacy by wheat germ agglutinin-modified nanoparticles for matrine delivery. Int J Pharmacol. 2020;16(6):470–478. doi:10.3923/ijp.2020.470.478
  • Martínez-Carmona M, Lozano D, Colilla M, Vallet-Regí M. Lectin-conjugated pH-responsive mesoporous silica nanoparticles for targeted bone cancer treatment. Acta Biomater. 2018;65:393–404. doi:10.1016/j.actbio.2017.11.007
  • Corbo C, Molinaro R, Tabatabaei M, Farokhzad OC, Mahmoudi M. Personalized protein Corona on nanoparticles and its clinical implications. Biomater Sci. 2017;5(3):378–387. doi:10.1039/C6BM00921B
  • Pinals RL, Chio L, Ledesma F, Landry MP. Engineering at the nano-bio interface: harnessing the protein Corona towards nanoparticle design and function. Analyst. 2020;145(15):5090–5112. doi:10.1039/D0AN00633E
  • Chen D, Ganesh S, Wang W, Amiji M. Protein Corona-enabled systemic delivery and targeting of nanoparticles. AAPS J. 2020;22(4):83. doi:10.1208/s12248-020-00464-x
  • Fasoli E. Protein Corona: Dr. Jekyll and Mr. Hyde of nanomedicine. Biotechnol Appl Biochem. 2021;68(6):1139–1152. doi:10.1002/bab.2035
  • Farshbaf M, Valizadeh H, Panahi Y, et al. The impact of protein Corona on the biological behavior of targeting nanomedicines. Int J Pharm. 2022;614:121458. doi:10.1016/j.ijpharm.2022.121458
  • Francia V, Yang K, Deville S, Reker-Smit C, Nelissen I, Salvati A. Corona composition can affect the mechanisms cells use to internalize nanoparticles. ACS Nano. 2019;13(10):11107–11121. doi:10.1021/acsnano.9b03824
  • Hajipour MJ, Raheb J, Akhavan O, et al. Personalized disease-specific protein Corona influences the therapeutic impact of graphene oxide. Nanoscale. 2015;7(19):8978–8994. doi:10.1039/C5NR00520E
  • Chio L, Del Bonis-O’Donnell JT, Kline MA, et al. Electrostatic assemblies of single-walled carbon nanotubes and sequence-tunable peptoid polymers detect a lectin protein and its target sugars. Nano Lett. 2019;19(11):7563–7572. doi:10.1021/acs.nanolett.8b04955
  • Li X, Yang G, Guan F. Preparation and application of lectin modified magnetosomes. J Biol. 2015;32(6):96–99.
  • Ferreira JA, Daniel-da-silva AL, Alves RMP, et al. Synthesis and optimization of tectin functionalized nanoprobes for the selective recovery of Glycoproteins from human body fluids. Anal Chem. 2011;83(18):7035–7043. doi:10.1021/ac200916j
  • Parker LM, Reineck P, Ghanii-Fard M, et al. Utilising glycobiology for fluorescent nanodiamond uptake and imaging in the central nervous system. Paper presented at: 2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring); June 17–20, 2019; 2019; Italy.
  • Pooja D, Kulhari H, Kuncha M, et al. Improving efficacy, oral bioavailability, and delivery of paclitaxel using protein-grafted solid lipid nanoparticles. Mol Pharm. 2016;13(11):3903–3912. doi:10.1021/acs.molpharmaceut.6b00691
  • Upadhyay A, Kandi R, Rao CP. Wheat germ agglutinin modified magnetic iron oxide nanocomplex as a cell membrane specific receptor target material for killing breast cancer cells. J Mat Chem B. 2018;6(36):5729–5737. doi:10.1039/C8TB01170B
  • Verathamjamras C, Sriwitool T-E, Netsirisawan P, et al. Aberrant RL2 O-GlcNAc antibody reactivity against serum-IgA1 of patients with colorectal cancer. Glycoconj J. 2021;38(1):55–65. doi:10.1007/s10719-021-09978-8
  • Yan Y, Ding H. pH-responsive nanoparticles for cancer immunotherapy: a brief review. Nanomaterials. 2020;10(8):1613. doi:10.3390/nano10081613
  • Akhavan O, Ghaderi E. Graphene nanomesh promises extremely efficient in vivo photothermal therapy. Small. 2013;9(21):3593–3601. doi:10.1002/smll.201203106
  • Ouyang A, Zhao D, Wang X, Zhang W, Jiang T. Covalent RGD-graphene-phthalocyanine nanocomposite for fluorescence imaging-guided dual active/passive tumor-targeted combinatorial phototherapy. J Mater Chem B. 2022;10(2):306–320. doi:10.1039/D1TB02254G
  • Wang S, Yu G, Wang Z, et al. Hierarchical tumor microenvironment-responsive nanomedicine for programmed delivery of chemotherapeutics. Adv Mater. 2018;30:e1803926–e1803926. doi:10.1002/adma.201803926
  • Sun CY, Shen S, Xu CF, et al. Tumor acidity-sensitive polymeric vector for active targeted siRNA delivery. J Am Chem Soc. 2015;137(48):15217–15224. doi:10.1021/jacs.5b09602
  • Lee SJ, Kwon O-S. O-GlcNAc transferase inhibitor synergistically enhances doxorubicin-induced apoptosis in HepG2 cells. Cancers. 2020;12(11):3154. doi:10.3390/cancers12113154
  • Itkonen HM, Poulose N, Steele RE, et al. Inhibition of O-GlcNAc transferase renders prostate cancer cells dependent on CDK9. Mol Cancer Res. 2020;18(10):1512–1521. doi:10.1158/1541-7786.MCR-20-0339
  • Lin TL, Rizzieri DA, Ryan DH, et al. Older adults with newly diagnosed high-risk/secondary AML who achieved remission with CPX-351: phase 3 post hoc analyses. Blood Adv. 2021;5(6):1719–1728. doi:10.1182/bloodadvances.2020003510