286
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Fully Natural Lecithin Encapsulated Nano-Resveratrol for Anti-Cancer Therapy

, , ORCID Icon & ORCID Icon
Pages 2069-2078 | Published online: 06 May 2022

References

  • Gilman A. The initial clinical trial of nitrogen mustard. Am J Surg. 1963;105:574–578. doi:10.1016/0002-9610(63)90232-0
  • Qin SY, Zhang A-Q, Cheng S-X, et al. Drug self-delivery systems for cancer therapy. Biomaterials. 2017;112:234–247. doi:10.1016/j.biomaterials.2016.10.016
  • Aung TN, Qu Z, Kortschak R, et al. Understanding the effectiveness of natural compound mixtures in cancer through Their molecular mode of action. Int J Mol Sci. 2017;18(3):656. doi:10.3390/ijms18030656
  • Li X, Liang S, Tan CH, et al. Nanocarriers in the enhancement of therapeutic efficacy of natural drugs. BIO Integration. 2021;2:40–49. doi:10.15212/bioi-2020-0040
  • Wu PS, Li YS, Kuo YC, et al. Preparation and evaluation of novel transfersomes combined with the natural antioxidant resveratrol. Molecules. 2019;24(3):600
  • Jang M, Cai L, Udeani GO, et al. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science. 1997;275(5297):218–220. doi:10.1126/science.275.5297.218
  • Vesely DL. New anticancer agents: hormones made within the heart. Anticancer Res. 2012;32(7):2515–2521.
  • Francioso A, Mastromarino P, Masci A, et al. Chemistry, stability and bioavailability of resveratrol. Med Chem. 2014;10(3):237–245. doi:10.2174/15734064113096660053
  • Bhattacharyya S, Ahmmed SM, Saha BP, et al. Soya phospholipid complex of mangiferin enhances its hepatoprotectivity by improving its bioavailability and pharmacokinetics. J Sci Food Agric. 2014;94(7):1380–1388. doi:10.1002/jsfa.6422
  • Chay SY, Tan WK, Saari N. Preparation and characterisation of nanoliposomes containing winged bean seeds bioactive peptides. J Microencapsul. 2015;32(5):488–495. doi:10.3109/02652048.2015.1057250
  • Jantscheff P, Esser N, Graeser R, et al. Liposomal gemcitabine (GemLip)-efficient drug against hormone-refractory Du145 and PC-3 prostate cancer xenografts. Prostate. 2009;69(11):1151–1163. doi:10.1002/pros.20964
  • Amoozgar Z, Yeo Y. Recent advances in stealth coating of nanoparticle drug delivery systems. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012;4(2):219–233. doi:10.1002/wnan.1157
  • Maeda H, Wu J, Sawa T, et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65(1–2):271–284. doi:10.1016/S0168-3659(99)00248-5
  • Al-Jubori AA, Sulaiman GM, Tawfeeq AT, et al. Layer-by-layer nanoparticles of tamoxifen and resveratrol for dual drug delivery system and potential triple-negative breast cancer treatment. Pharmaceutics. 2021;13(7). doi:10.3390/pharmaceutics13071098
  • Wangenheim J, Bolcsfoldi G. Mouse lymphoma L5178Y thymidine kinase locus assay of 50 compounds. Mutagenesis. 1988;3(3):193–205. doi:10.1093/mutage/3.3.193
  • Biondi O, Motta S, Mosesso P. Low molecular weight polyethylene glycol induces chromosome aberrations in Chinese hamster cells cultured in vitro. Mutagenesis. 2002;17(3):261–264. doi:10.1093/mutage/17.3.261
  • Lanigan RS. Cosmetic ingredient review expert, final report on the safety assessment of PPG-11 and PPG-15 stearyl ethers. Int J Toxicol. 2001;20(4):53–59.
  • Zeisel SH, da Costa KA. Choline: an essential nutrient for public health. Nutr Rev. 2009;67(11):615–623. doi:10.1111/j.1753-4887.2009.00246.x
  • Xu X, Wu J, Liu Y, et al. Multifunctional envelope-type siRNA delivery nanoparticle platform for prostate cancer therapy. ACS Nano. 2017;11(3):2618–2627. doi:10.1021/acsnano.6b07195
  • Guo M, Marek L, Liang Y, et al. Transforming tea catechins into potent anticancer compound: analysis of three boronated-PEG delivery system. Micromachines. 2021;13(1):45. doi:10.3390/mi13010045
  • Robinson K, Mock C, Liang D. Pre-formulation studies of resveratrol. Drug Dev Ind Pharm. 2015;41(9):1464–1469. doi:10.3109/03639045.2014.958753
  • Liu J, Bao X, Kolesnik I, et al. Enhancing the in vivo stability of polycation gene carriers by using PEGylated hyaluronic acid as a shielding system. BIO Integration. 2022. doi:10.15212/bioi-2021-0033
  • Kumari A, Singla R, Guliani A, et al. Nanoencapsulation for drug delivery. EXCLI J. 2014;13:265–286.
  • de Barros AB, Tsourkas A, Saboury B, et al. Emerging role of radiolabeled nanoparticles as an effective diagnostic technique. EJNMMI Res. 2012;2(1):39. doi:10.1186/2191-219X-2-39
  • Kulkarni SA, Feng SS. Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharm Res. 2013;30(10):2512–2522. doi:10.1007/s11095-012-0958-3
  • Faraji AH, Wipf P. Nanoparticles in cellular drug delivery. Bioorg Med Chem. 2009;17(8):2950–2962. doi:10.1016/j.bmc.2009.02.043
  • Xiao K, Li Y, Luo J, et al. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials. 2011;32(13):3435–3446. doi:10.1016/j.biomaterials.2011.01.021
  • Alexis F, Pridgen E, Molnar LK, et al. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5(4):505–515. doi:10.1021/mp800051m
  • Simon-Vazquez R, Tsapis N, Lorscheider M, et al. Improving dexamethasone drug loading and efficacy in treating arthritis through a lipophilic prodrug entrapped into PLGA-PEG nanoparticles. Drug Deliv Transl Res. 2022;12(5):1270–1284. doi:10.1007/s13346-021-01112-3