348
Views
0
CrossRef citations to date
0
Altmetric
Review

Immune Repertoire and Advancements in Nanotherapeutics for the Impediment of Severe Steroid Resistant Asthma (SSR)

, , , , , , , , & show all
Pages 2121-2138 | Published online: 12 May 2022

References

  • Menzies-Gow A, Mansur AH, Brightling CE. Clinical utility of fractional exhaled nitric oxide in severe asthma management. Eur Respir J. 2020;55(3):1901633. doi:10.1183/13993003.01633-2019
  • Klehm C, Hildebrand E, Meyers MS. Mitigating chronic diseases during archaeological fieldwork: lessons from managing asthma, diabetes, and depression. Adv Archaeol Pract. 2021;9(1):41–48. doi:10.1017/aap.2020.49
  • Dharmage S, Perret J, Custovic A. Epidemiology of asthma in children and adults. Front Pediatr. 2019;7:246. doi:10.3389/fped.2019.00246
  • Reddel HK, Busse WW, Pedersen S, et al. Should recommendations about starting inhaled corticosteroid treatment for mild asthma be based on symptom frequency: a post-hoc efficacy analysis of the START study. Lancet. 2017;389(10065):157–166. doi:10.1016/S0140-6736(16)31399-X
  • Reddel HK, Bacharier LB, Bateman ED, et al. Global Initiative for Asthma (GINA) strategy 2021–executive summary and rationale for key changes. J Allergy Clin Immunol Pract. 2021. doi:10.1183/13993003.02730-2021
  • Adcock IM, Ford PA, Bhavsar P, Ahmad T, Chung KF. Steroid resistance in asthma: mechanisms and treatment options. Curr Allergy Asthma Rep. 2008;8(2):171–178. doi:10.1007/s11882-008-0028-4
  • Marshall CL, Hasani K, Mookherjee N. Immunobiology of steroid-unresponsive severe asthma. Front Allergy. 2021;50:718267.
  • Xu Y, Liu H, Song L. Novel drug delivery systems targeting oxidative stress in chronic obstructive pulmonary disease: a review. J Nanobiotechnology. 2020;18(1):1–25. doi:10.1186/s12951-020-00703-5
  • Mishra B, Singh J. Novel drug delivery systems and significance in respiratory diseases. In: Targeting Chronic Inflammatory Lung Diseases Using Advanced Drug Delivery Systems. Elsevier; 2020:57–95.
  • SreeHarsha N, Venugopala KN, Nair AB, et al. An efficient, lung-targeted, drug-delivery system to treat asthma via microparticles. Drug Des Devel Ther. 2019;13:4389. doi:10.2147/DDDT.S216660
  • Takizawa H. Recent development of drug delivery systems for the treatment of asthma and related disorders. Recent Pat Inflamm Allergy Drug Discov. 2009;3(3):232–239. doi:10.2174/187221309789257414
  • Xue Y, Zhou Y, Bao W, et al. STAT3 and IL-6 contribute to corticosteroid resistance in an OVA and ozone-induced asthma model with neutrophil infiltration. Front Mol Biosci. 2021;8. doi:10.3389/fmolb.2021.717962
  • Thompson RJ, Sayers I, Kuokkanen K, Hall IP. Purinergic receptors in the airways: potential therapeutic targets for asthma? Front Allergy. 2021;2:16. doi:10.3389/falgy.2021.677677
  • Gounni AS, Koussih L, Atoui S, Tliba O. New insights on the role of Pentraxin3 in allergic asthma. Front Allergy. 2021;2:20.
  • Essilfie A-T, Horvat JC, Kim RY, et al. Macrolide therapy suppresses key features of experimental steroid-sensitive and steroid-insensitive asthma. Thorax. 2015;70(5):458–467. doi:10.1136/thoraxjnl-2014-206067
  • Vesikari T, Van Damme P, Giaquinto C, et al. European Society for Paediatric Infectious Diseases consensus recommendations for rotavirus vaccination in Europe: update 2014. Pediatr Infect Dis J. 2015;34(6):635–643. doi:10.1097/INF.0000000000000683
  • Essilfie A-T, Simpson JL, Horvat JC, et al. Haemophilus influenzae infection drives IL-17-mediated neutrophilic allergic airways disease. PLoS Pathog. 2011;7(10):e1002244. doi:10.1371/journal.ppat.1002244
  • Simpson JL, Powell H, Boyle MJ, Scott RJ, Gibson PG. Clarithromycin targets neutrophilic airway inflammation in refractory asthma. Am J Respir Crit Care Med. 2008;177(2):148–155. doi:10.1164/rccm.200707-1134OC
  • Chakraborty K, Paulraj R. Sesquiterpenoids with free-radical-scavenging properties from marine macroalga Ulva fasciataDelile. Food Chem. 2010;122(1):31–41. doi:10.1016/j.foodchem.2010.02.012
  • Shah SAA, Hassan S, Bungau S, et al. Chemically diverse and biologically active secondary metabolites from marine Phylum chlorophyta. Mar Drugs. 2020;18(10):493. doi:10.3390/md18100493
  • Manzoor Z, Koo J-E, Ali I, et al. 4-Hydroxy-2, 3-dimethyl-2-nonen-4-olide has an inhibitory effect on pro-inflammatory cytokine production in CpG-stimulated bone marrow-derived dendritic cells. Mar Drugs. 2016;14(5):88. doi:10.3390/md14050088
  • Lee H-J, Kang G-J, Yang E-J, et al. Two enone fatty acids isolated from Gracilaria verrucosa suppress the production of inflammatory mediators by down-regulating NF-κB and STAT1 activity in lipopolysaccharide-stimulated Raw 264.7 cells. Arch Pharm Res. 2009;32(3):453–462. doi:10.1007/s12272-009-1320-0
  • Kozuma S, Hirota-Takahata Y, Fukuda D, Kuraya N, Nakajima M, Ando O. Identification and biological activity of ogipeptins, novel LPS inhibitors produced by marine bacterium. J Antibiot (Tokyo). 2017;70(1):79–83. doi:10.1038/ja.2016.81
  • Chen S, Wang J, Lin X, et al. Chrysamides A–C, three dimeric nitrophenyl trans -epoxyamides produced by the deep-sea-derived fungus Penicillium chrysogenum SCSIO41001. Org Lett. 2016;18(15):3650–3653. doi:10.1021/acs.orglett.6b01699
  • Jeong S, Ku S-K, Min G, Choi H, Park DH, Bae J-S. Suppressive effects of three diketopiperazines from marine-derived bacteria on polyphosphate-mediated septic responses. Chem Biol Interact. 2016;257:61–70. doi:10.1016/j.cbi.2016.07.032
  • Ito K, Getting S, Charron C. Mode of glucocorticoid actions in airway disease. Scientific World J. 2006;6:1750–1769. doi:10.1100/tsw.2006.274
  • Ito K, Ito M, Elliott WM, et al. Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N Engl J Med. 2005;352(19):1967–1976. doi:10.1056/NEJMoa041892
  • Ito K, Barnes PJ, Adcock IM. Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1β-induced histone H4 acetylation on lysines 8 and 12. Mol Cell Biol. 2000;20(18):6891–6903. doi:10.1128/MCB.20.18.6891-6903.2000
  • Ito K, Yamamura S, Essilfie-‐Quaye S, et al. Histone deacetylase 2-‐mediated deacetylation of the glucocorticoid receptor enables NF-‐kappaB suppression. J Exp Med. 2006;203(1):7–13. doi:10.1084/jem.20050466
  • Löfgren C, Hjortsberg L, Blennow M, et al. Mechanisms of cross-resistance between nucleoside analogues and vincristine or daunorubicin in leukemic cells. Biochem Biophys Res Commun. 2004;320(3):825–832. doi:10.1016/j.bbrc.2004.06.016
  • Chen-Yu Hsu A, Starkey MR, Hanish I, et al. Targeting PI3K-p110α suppresses influenza virus infection in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2015;191(9):1012–1023. doi:10.1164/rccm.201501-0188OC
  • Wadhwa R, Dua K, Adcock IM, Horvat JC, Kim RY, Hansbro PM. Cellular mechanisms underlying steroid-resistant asthma. Eur Respir Rev. 2019;28:190096.
  • Foster PS, Plank M, Collison A, et al. The emerging role of micro RNA s in regulating immune and inflammatory responses in the lung. Immunol Rev. 2013;253(1):198–215. doi:10.1111/imr.12058
  • Plank MW, Maltby S, Tay HL, et al. MicroRNA expression is altered in an ovalbumin-induced asthma model and targeting miR-155 with antagomirs reveals cellular specificity. PLoS One. 2015;10(12):e0144810. doi:10.1371/journal.pone.0144810
  • Lu TX, Munitz A, Rothenberg ME. MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol. 2009;182(8):4994–5002. doi:10.4049/jimmunol.0803560
  • Cruz-Topete D, Cidlowski JA. One hormone, two actions: anti-and pro-inflammatory effects of glucocorticoids. Neuroimmunomodulation. 2015;22(1–2):20–32. doi:10.1159/000362724
  • Kwak Y, Song CH, Yi HK, et al. Involvement of PTEN in airway hyperresponsiveness and inflammation in bronchial asthma. J Clin Invest. 2003;111(7):1083–1092. doi:10.1172/JCI16440
  • Sanjeewa KA, Jayawardena TU, Lee HG, Herath KH, Jee Y, Jeon Y-J. The protective effect of Sargassum horneri against particulate matter-induced inflammation in lung tissues of an in vivo mouse asthma model. Food Funct. 2019;10(12):7995–8004. doi:10.1039/C9FO02068C
  • Chen X, Miao M, Zhou M, et al. Poly-L-arginine promotes asthma angiogenesis through induction of FGFBP1 in airway epithelial cells via activation of the mTORC1-STAT3 pathway. Cell Death Dis. 2021;12(8):1–14. doi:10.1038/s41419-021-04055-2
  • Kim RY, Horvat JC, Pinkerton JW, et al. MicroRNA-21 drives severe, steroid-insensitive experimental asthma by amplifying phosphoinositide 3-kinase–mediated suppression of histone deacetylase 2. J Allergy Clin Immunol. 2017;139(2):519–532. doi:10.1016/j.jaci.2016.04.038
  • Kim R, Pinkerton J, Essilfie A, Robertson A, Baines K, Brown A. Inhibition of NLRP3 inflammasome-mediated, interleukin-1β-dependent inflammatory responses attenuates severe, steroid-resistant experimental asthma. Am J Respir Crit Care Med. 2017;196(3):283–297. doi:10.1164/rccm.201609-1830OC
  • Pinkerton JW, Kim RY, Robertson AA, et al. Inflammasomes in the lung. Mol Immunol. 2017;86:44–55. doi:10.1016/j.molimm.2017.01.014
  • Simpson JL, Grissell TV, Douwes J, Scott RJ, Boyle MJ, Gibson PG. Innate immune activation in neutrophilic asthma and bronchiectasis. Thorax. 2007;62(3):211–218. doi:10.1136/thx.2006.061358
  • Baines KJ, Simpson JL, Wood LG, Scott RJ, Gibson PG. Transcriptional phenotypes of asthma defined by gene expression profiling of induced sputum samples. J Allergy Clin Immunol. 2011;127(1):153–160. e159. doi:10.1016/j.jaci.2010.10.024
  • Simpson JL, Phipps S, Baines KJ, Oreo KM, Gunawardhana L, Gibson PG. Elevated expression of the NLRP3 inflammasome in neutrophilic asthma. Eur Respir J. 2014;43(4):1067–1076. doi:10.1183/09031936.00105013
  • Darville T, Welter-Stahl L, Cruz C, Sater AA, Andrews CW, Ojcius DM. Effect of the purinergic receptor P2X 7 on chlamydia infection in cervical epithelial cells and vaginally infected mice. J Immunol. 2007;179(6):3707–3714. doi:10.4049/jimmunol.179.6.3707
  • Bel EH, Ortega HG, Pavord ID. Glucocorticoids and mepolizumab in eosinophilic asthma. N Engl J Med. 2014;371(13):2434. doi:10.1056/NEJMoa1403291
  • Ortega HG, Liu MC, Pavord ID, et al. Mepolizumab treatment in patients with severe eosinophilic asthma. NEJM. 2014;371(13):1198–1207. doi:10.1056/NEJMoa1403290
  • Starkey MR, McKenzie AN, Belz GT, Hansbro PM. Pulmonary group 2 innate lymphoid cells: surprises and challenges. Mucosal Immunol. 2019;12(2):299–311. doi:10.1038/s41385-018-0130-4
  • Robinson D, Humbert M, Buhl R, et al. Revisiting T ype 2‐high and T ype 2‐low airway inflammation in asthma: current knowledge and therapeutic implications. Clin Exp Allergy. 2017;47(2):161–175. doi:10.1111/cea.12880
  • Mansuri S, Kesharwani P, Jain K, Tekade RK, Jain N. Mucoadhesion: a promising approach in drug delivery system. React Funct Polym. 2016;100:151–172. doi:10.1016/j.reactfunctpolym.2016.01.011
  • Amore E, Ferraro M, Manca ML, et al. Mucoadhesive solid lipid microparticles for controlled release of a corticosteroid in the chronic obstructive pulmonary disease treatment. Nanomedicine. 2017;12(19):2287–2302. doi:10.2217/nnm-2017-0072
  • Liu T, Han M, Tian F, Cun D, Rantanen J, Yang M. Budesonide nanocrystal-loaded hyaluronic acid microparticles for inhalation: in vitro and in vivo evaluation. Carbohydr Polym. 2018;181:1143–1152. doi:10.1016/j.carbpol.2017.11.018
  • Omlor AJ, Nguyen J, Bals R, Dinh QT. Nanotechnology in respiratory medicine. Respir Res. 2015;16(1):1–9. doi:10.1186/s12931-015-0223-5
  • Villegas L, Stidham T, Nozik-Grayck E. Oxidative stress and therapeutic development in lung diseases. J Respir Pulm Med 2014;4(04). doi:10.4172/2161-105X.1000194
  • Castellani S, Trapani A, Spagnoletta A, et al. Nanoparticle delivery of grape seed-derived proanthocyanidins to airway epithelial cells dampens oxidative stress and inflammation. J Transl Med. 2018;16(1):1–15. doi:10.1186/s12967-018-1509-4
  • Carvalho FO, Silva ÉR, Nunes PS, et al. Effects of the solid lipid nanoparticle of carvacrol on rodents with lung injury from smoke inhalation. Naunyn-Schmiedeberg’s Arch Pharmacol. 2020;393(3):445–455. doi:10.1007/s00210-019-01731-1
  • Müller R, Radtke M, Wissing S. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm. 2002;242(1–2):121–128. doi:10.1016/S0378-5173(02)00180-1
  • Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2012;64:83–101. doi:10.1016/j.addr.2012.09.021
  • Thanki K, Zeng X, Justesen S, et al. Engineering of small interfering RNA-loaded lipidoid-poly (DL-lactic-co-glycolic acid) hybrid nanoparticles for highly efficient and safe gene silencing: a quality by design-based approach. Eur J Pharm Biopharm. 2017;120:22–33. doi:10.1016/j.ejpb.2017.07.014
  • Akinc A, Zumbuehl A, Goldberg M, et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol. 2008;26(5):561–569. doi:10.1038/nbt1402
  • Chikuma K, Arima K, Asaba Y, et al. The potential of lipid-polymer nanoparticles as epigenetic and ROS control approaches for COPD. Free Radic Res. 2020;54(11–12):829–840. doi:10.1080/10715762.2019.1696965
  • Wang S, Yang X, Zhou L, Li J, Chen H. 2D nanostructures beyond graphene: preparation, biocompatibility and biodegradation behaviors. J Mater Chem B. 2020;8(15):2974–2989. doi:10.1039/C9TB02845E
  • Passi M, Kumar V, Packirisamy G. Theranostic nanozyme: silk fibroin based multifunctional nanocomposites to combat oxidative stress. Mater Sci Eng C. 2020;107:110255. doi:10.1016/j.msec.2019.110255
  • Boland S, Guadagnini R, Baeza-Squiban A, Hussain S, Marano F. Nanoparticles used in medical applications for the lung: hopes for nanomedicine and fears for nanotoxicity. Proc J Phy. 2011;2011:012031.
  • Liu W, Hu T, Zhou L, et al. Nrf2 protects against oxidative stress induced by SiO 2 nanoparticles. Nanomedicine. 2017;12(19):2303–2318. doi:10.2217/nnm-2017-0046
  • Willis L, Hayes D, Mansour HM. Therapeutic liposomal dry powder inhalation aerosols for targeted lung delivery. Lung. 2012;190(3):251–262. doi:10.1007/s00408-011-9360-x
  • Allen TM. Liposomal drug formulations. Drugs. 1998;56(5):747–756. doi:10.2165/00003495-199856050-00001
  • Pinheiro M, Lúcio M, Lima JL, Reis S. Liposomes as drug delivery systems for the treatment of TB. Nanomedicine. 2011;6(8):1413–1428. doi:10.2217/nnm.11.122
  • Turrens JF, Crapo JD, Freeman B. Protection against oxygen toxicity by intravenous injection of liposome-entrapped catalase and superoxide dismutase. J Clin Invest. 1984;73(1):87–95. doi:10.1172/JCI111210
  • Suntres ZE, Shek PN. Prevention of phorbol myristate acetate-induced acute lung injury by α-tocopherol liposomes. J Drug Target. 1995;3(3):201–208. doi:10.3109/10611869509015946
  • Barnard ML, Baker RR, Matalon S. Mitigation of oxidant injury to lung microvasculature by intratracheal instillation of antioxidant enzymes. Am J Physiol Lung Cell Mol Physiol. 1993;265(4):L340–L345. doi:10.1152/ajplung.1993.265.4.L340
  • Raghu G, Amatto VC, Behr J, Stowasser S. Comorbidities in idiopathic pulmonary fibrosis patients: a systematic literature review. Eur Respir J. 2015;46(4):1113–1130. doi:10.1183/13993003.02316-2014
  • Konduri KS, Nandedkar S, Düzgünes N, et al. Efficacy of liposomal budesonide in experimental asthma. J Allergy Clin Immunol. 2003;111(2):321–327. doi:10.1067/mai.2003.104
  • Honmane S, Hajare A, More H, Osmani RAM, Salunkhe S. Lung delivery of nanoliposomal salbutamol sulfate dry powder inhalation for facilitated asthma therapy. J Liposome Res. 2019;29(4):332–342. doi:10.1080/08982104.2018.1531022
  • Saari S, Vidgren M, Herrala J, Turjanmaa V, Koskinen M, Nieminen M. Possibilities of formoterol to enhance the peripheral lung deposition of the inhaled liposome corticosteroids. Respir Med. 2002;96(12):999–1005. doi:10.1053/rmed.2002.1393
  • Elhissi A, Islam M, Arafat B, Taylor M, Ahmed W. Development and characterisation of freeze-dried liposomes containing two anti-asthma drugs. Micro Nano Lett. 2010;5(3):184–188. doi:10.1049/mnl.2010.0032
  • Maret M, Ruffie C, Periquet B, et al. Liposomal retinoic acids modulate asthma manifestations in mice. J Nutr. 2007;137(12):2730–2736. doi:10.1093/jn/137.12.2730
  • Alberca-Custodio RW, Faustino LD, Gomes E, et al. Allergen-specific immunotherapy with liposome containing CpG-ODN in murine model of asthma relies on MyD88 signaling in dendritic cells. Front Immunol. 2020;11:692. doi:10.3389/fimmu.2020.00692
  • O’riordan TG, Waldrep JC, Abraham WM, et al. Delivery of nebulized budesonide liposomes to the respiratory tract of allergic sheep. J Aerosol Med. 1997;10(2):117–128. doi:10.1089/jam.1997.10.117
  • Dekhuijzen PR, Batsiou M, Bjermer L, et al. Incidence of oral thrush in patients with COPD prescribed inhaled corticosteroids: effect of drug, dose, and device. Respir Med. 2016;120:54–63. doi:10.1016/j.rmed.2016.09.015
  • Hoesel LM, Flierl MA, Niederbichler AD, et al. Ability of antioxidant liposomes to prevent acute and progressive pulmonary injury. Antioxid Redox Signal. 2008;10(5):963–972. doi:10.1089/ars.2007.1878
  • Manconi M, Manca ML, Valenti D, et al. Chitosan and hyaluronan coated liposomes for pulmonary administration of curcumin. Int J Pharm. 2017;525(1):203–210. doi:10.1016/j.ijpharm.2017.04.044
  • Barjaktarevic IZ, Arredondo AF, Cooper CB. Positioning new pharmacotherapies for COPD. Int J Chron Obstruct Pulmon Dis. 2015;10:1427. doi:10.2147/COPD.S83758
  • Paranjpe M, Müller-Goymann CC. Nanoparticle-mediated pulmonary drug delivery: a review. Int J Mol Sci. 2014;15(4):5852–5873. doi:10.3390/ijms15045852
  • Hood ED, Chorny M, Greineder CF, Alferiev IS, Levy RJ, Muzykantov VR. Endothelial targeting of nanocarriers loaded with antioxidant enzymes for protection against vascular oxidative stress and inflammation. Biomaterials. 2014;35(11):3708–3715. doi:10.1016/j.biomaterials.2014.01.023
  • Ourique AF, Dos Santos Chaves P, Souto GD, Pohlmann AR, Guterres SS, Beck RCR. Redispersible liposomal-N-acetylcysteine powder for pulmonary administration: development, in vitro characterization and antioxidant activity. Eur J Pharm Sci. 2014;65:174–182. doi:10.1016/j.ejps.2014.09.017
  • Külkamp IC, Rabelo BD, Berlitz SJ, et al. Nanoencapsulation improves the in vitro antioxidant activity of lipoic acid. J Biomed Nanotechnol. 2011;7(4):598–607. doi:10.1166/jbn.2011.1318
  • Mohamed A, Pekoz AY, Ross K, Hutcheon GA, Saleem IY. Pulmonary delivery of Nanocomposite Microparticles (NCMPs) incorporating miR-146a for treatment of COPD. Int J Pharm. 2019;569:118524. doi:10.1016/j.ijpharm.2019.118524
  • El-Sherbiny IM, Smyth HD. Controlled release pulmonary administration of curcumin using swellable biocompatible microparticles. Mol Pharm. 2012;9(2):269–280. doi:10.1021/mp200351y
  • Ding Y, Jiang Z, Saha K, et al. Gold nanoparticles for nucleic acid delivery. Mol Ther. 2014;22(6):1075–1083. doi:10.1038/mt.2014.30
  • Geiser M, Quaile O, Wenk A, et al. Cellular uptake and localization of inhaled gold nanoparticles in lungs of mice with chronic obstructive pulmonary disease. Part Fibre Toxicol. 2013;10(1):1–10. doi:10.1186/1743-8977-10-19
  • Gil D, Rodriguez J, Ward B, Vertegel A, Ivanov V, Reukov V. Antioxidant activity of SOD and catalase conjugated with nanocrystalline ceria. Bioengineering. 2017;4(4):18. doi:10.3390/bioengineering4010018
  • Oyarzun-Ampuero F, Brea J, Loza M, Torres D, Alonso M. Chitosan–hyaluronic acid nanoparticles loaded with heparin for the treatment of asthma. Int J Pharm. 2009;381(2):122–129. doi:10.1016/j.ijpharm.2009.04.009
  • Matsuo Y, Ishihara T, Ishizaki J, Miyamoto K-I, Higaki M, Yamashita N. Effect of betamethasone phosphate loaded polymeric nanoparticles on a murine asthma model. Cell Immunol. 2009;260(1):33–38. doi:10.1016/j.cellimm.2009.07.004
  • Wang W, Zhu R, Xie Q, et al. Enhanced bioavailability and efficiency of curcumin for the treatment of asthma by its formulation in solid lipid nanoparticles. Int J Nanomedicine. 2012;7:3667. doi:10.2147/IJN.S30428
  • Kim DE, Lee Y, Kim M, Lee S, Jon S, Lee S-H. Bilirubin nanoparticles ameliorate allergic lung inflammation in a mouse model of asthma. Biomaterials. 2017;140:37–44. doi:10.1016/j.biomaterials.2017.06.014
  • Chen Y-D, Liang Z-Y, Cen -Y-Y, et al. Development of oral dispersible tablets containing prednisolone nanoparticles for the management of pediatric asthma. Drug Des Devel Ther. 2015;9:5815. doi:10.2147/DDDT.S86075
  • Wang K, Feng Y, Li S, et al. Oral delivery of bavachinin-loaded PEG-PLGA nanoparticles for asthma treatment in a murine model. J Biomed Nanotechnol. 2018;14(10):1806–1815. doi:10.1166/jbn.2018.2618
  • Chan Y, Ng SW, Chellappan DK, et al. Celastrol-loaded liquid crystalline nanoparticles as an anti-inflammatory intervention for the treatment of asthma. Int J Poly Mater Poly Biomater. 2021;70(11):754–763. doi:10.1080/00914037.2020.1765350
  • Yong DOC, Saker SR, Wadhwa R, et al. Preparation, characterization and in-vitro efficacy of quercetin loaded liquid crystalline nanoparticles for the treatment of asthma. J Drug Deliv Sci Technol. 2019;54:101297. doi:10.1016/j.jddst.2019.101297
  • Chakraborty S, Ehsan I, Mukherjee B, et al. Therapeutic potential of andrographolide-loaded nanoparticles on a murine asthma model. Nanomedicine. 2019;20:102006. doi:10.1016/j.nano.2019.04.009
  • Lee D, Shirley SA, Lockey RF, Mohapatra SS. Thiolated chitosan nanoparticles enhance anti-inflammatory effects of intranasally delivered theophylline. Respir Res. 2006;7:112. doi:10.1186/1465-9921-7-112
  • Wang D, Nasab EM, Athari SS. Study effect of Baicalein encapsulated/loaded Chitosan-nanoparticle on allergic Asthma pathology in mouse model. Saudi J Biol Sci. 2021;28(8):4311–4317. doi:10.1016/j.sjbs.2021.04.009
  • Chattopadhyay P, Pathak MP, Patowary P, et al. Synthesized atropine nanoparticles ameliorate airway hyperreactivity and remodeling in a murine model of chronic asthma. J Drug Deliv Sci Technol. 2020;56:101507. doi:10.1016/j.jddst.2020.101507
  • Mehta P, Kadam S, Pawar A, Bothiraja C. Dendrimers for pulmonary delivery: current perspectives and future challenges. New J Chem. 2019;43(22):8396–8409. doi:10.1039/C9NJ01591D
  • Ryan GM, Kaminskas LM, Kelly BD, Owen DJ, McIntosh MP, Porter CJ. Pulmonary administration of PEGylated polylysine dendrimers: absorption from the lung versus retention within the lung is highly size-dependent. Mol Pharm. 2013;10(8):2986–2995. doi:10.1021/mp400091n
  • Conti DS, Brewer D, Grashik J, Avasarala S, da Rocha SR. Poly (amidoamine) dendrimer nanocarriers and their aerosol formulations for siRNA delivery to the lung epithelium. Mol Pharm. 2014;11(6):1808–1822. doi:10.1021/mp4006358
  • Bohr A, Tsapis N, Foged C, Andreana I, Yang M, Fattal E. Treatment of acute lung inflammation by pulmonary delivery of anti-TNF-α siRNA with PAMAM dendrimers in a murine model. Eur J Pharm Biopharm. 2020;156:114–120. doi:10.1016/j.ejpb.2020.08.009
  • Muralidharan P, Hayes D, Black SM, Mansour HM. Microparticulate/nanoparticulate powders of a novel Nrf2 activator and an aerosol performance enhancer for pulmonary delivery targeting the lung Nrf2/Keap-1 pathway. Mol Syst Des Eng. 2016;1(1):48–65. doi:10.1039/C5ME00004A
  • Trotta V, Lee W-H, Loo C-Y, Young PM, Traini D, Scalia S. Co-spray dried resveratrol and budesonide inhalation formulation for reducing inflammation and oxidative stress in rat alveolar macrophages. Eur J Pharm Sci. 2016;86:20–28. doi:10.1016/j.ejps.2016.02.018
  • Liang Z, Ni R, Zhou J, Mao S. Recent advances in controlled pulmonary drug delivery. Drug Discov Today. 2015;20(3):380–389. doi:10.1016/j.drudis.2014.09.020
  • Wakaskar RR. General overview of lipid–polymer hybrid nanoparticles, dendrimers, micelles, liposomes, spongosomes and cubosomes. J Drug Target. 2018;26(4):311–318. doi:10.1080/1061186X.2017.1367006
  • Riazifar M, Mohammadi MR, Pone EJ, et al. Stem cell-derived exosomes as nanotherapeutics for autoimmune and neurodegenerative disorders. ACS nano. 2019;13:6670–6688.