644
Views
2
CrossRef citations to date
0
Altmetric
Review

How Microalgae is Effective in Oxygen Deficiency Aggravated Diseases? A Comprehensive Review of Literature

ORCID Icon, , ORCID Icon, ORCID Icon, & ORCID Icon
Pages 3101-3122 | Published online: 15 Jul 2022

References

  • Acker T, Acker H. Cellular oxygen sensing need in CNS function: physiological and pathological implications. J Exp Biol. 2004;207(18):3171–3188. doi:10.1242/jeb.01075
  • Kranke P, Bennett MH, Martyn-St James M, Schnabel A, Debus SE, Weibel S. Hyperbaric oxygen therapy for chronic wounds. Cochrane Database Syst Rev. 2015;6:CD004123. doi:10.1002/14651858.CD004123.pub4
  • Darby IA, Hewitson TD. Hypoxia in tissue repair and fibrosis. Cell Tissue Res Sep. 2016;365(3):553–562. doi:10.1007/s00441-016-2461-3
  • Qiu Y, Li P, Ji C. Cell death conversion under hypoxic condition in tumor development and therapy. Int J Mol Sci. 2015;16(10):25536–25551. doi:10.3390/ijms161025536
  • Zheng X, Wang X, Mao H, Wu W, Liu B, Jiang X. Hypoxia-specific ultrasensitive detection of tumours and cancer cells in vivo. Nat Commun. 2015;6(1):5834. doi:10.1038/ncomms6834
  • Chen H, Tian J, He W, Guo Z. H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells. J Am Chem Soc. 2015;137(4):1539–1547. doi:10.1021/ja511420n
  • Brown JM, Wilson WR. Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer. 2004;4(6):437–447. doi:10.1038/nrc1367
  • Mpekris F, Voutouri C, Baish JW, et al. Combining microenvironment normalization strategies to improve cancer immunotherapy. Proc Natl Acad Sci USA. 2020;117(7):3728–3737. doi:10.1073/pnas.1919764117
  • Wang B, Zhao Q, Zhang Y, et al. Targeting hypoxia in the tumor microenvironment: a potential strategy to improve cancer immunotherapy. J Exp Clin Cancer Res. 2021;40(1):24. doi:10.1186/s13046-020-01820-7
  • Pietrobon V, Marincola FM. Hypoxia and the phenomenon of immune exclusion. J Transl Med. 2021;19(1):9. doi:10.1186/s12967-020-02667-4
  • Sinha BK. Role of oxygen and nitrogen radicals in the mechanism of anticancer drug cytotoxicity. J Cancer Sci Ther. 2020;12(1):10–18.
  • Wang L, Bi R, Yin H, Liu H, Li L. ENO1 silencing impairs hypoxia-induced gemcitabine chemoresistance associated with redox modulation in pancreatic cancer cells. Am J Transl Res. 2019;11(7):4470–4480.
  • Heusch G. Myocardial ischemia: lack of coronary blood flow, myocardial oxygen supply-demand imbalance, or what? Am J Physiol Heart Circ Physiol. 2019;316(6):H1439–H1446. doi:10.1152/ajpheart.00139.2019
  • Cohen JE, Goldstone AB, Paulsen MJ, et al. An innovative biologic system for photon-powered myocardium in the ischemic heart. Sci Adv. 2017;3(6):e1603078. doi:10.1126/sciadv.1603078
  • Chen QW, Qiao JY, Liu XH, Zhang C, Zhang XZ. Customized materials-assisted microorganisms in tumor therapeutics. Chem Soc Rev. 2021;50(22):12576–12615. doi:10.1039/d0cs01571g
  • Singh S, Kate BN, Banerjee UC. Bioactive compounds from cyanobacteria and microalgae: an overview. Crit Rev Biotechnol. 2005;25(3):73–95. doi:10.1080/07388550500248498
  • Gangl D, Zedler JA, Rajakumar PD, et al. Biotechnological exploitation of microalgae. J Exp Bot. 2015;66(22):6975–6990. doi:10.1093/jxb/erv426
  • Matos J, Cardoso C, Bandarra NM, Afonso C. Microalgae as healthy ingredients for functional food: a review. Food Funct. 2017;8(8):2672–2685. doi:10.1039/c7fo00409e
  • Chavez MN, Moellhoff N, Schenck TL, Egana JT, Nickelsen J. Photosymbiosis for biomedical applications. Front Bioeng Biotechnol. 2020;8:577204. doi:10.3389/fbioe.2020.577204
  • Khavari F, Saidijam M, Taheri M, Nouri F. Microalgae: therapeutic potentials and applications. Mol Biol Rep. 2021;48(5):4757–4765. doi:10.1007/s11033-021-06422-w
  • Dow L. How do quorum-sensing signals mediate algae-bacteria interactions? Microorganisms. 2021;9(7):1391–1406. doi:10.3390/microorganisms9071391
  • Huo M, Wang L, Zhang L, Wei C, Chen Y, Shi J. Photosynthetic tumor oxygenation by photosensitizer-containing cyanobacteria for enhanced photodynamic therapy. Angew Chem Int Ed. 2020;59(5):1906–1913. doi:10.1002/anie.201912824
  • Tavares-Carreon F, De la Torre-Zavala S, Arocha-Garza HF, Souza V, Galan-Wong LJ, Aviles-Arnaut H. In vitro anticancer activity of methanolic extract of Granulocystopsis sp., a microalgae from an oligotrophic oasis in the Chihuahuan desert. Peer J. 2020;8:e8686. doi:10.7717/peerj.8686
  • Wu Q, Liu L, Miron A, Klimova B, Wan D, Kuca K. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Arch Toxicol. 2016;90(8):1817–1840. doi:10.1007/s00204-016-1744-5
  • Zhong D, Zhang D, Xie T, Zhou M. Biodegradable microalgae-based carriers for targeted delivery and imaging-guided therapy toward lung metastasis of breast cancer. Small. 2020;16(20):e2000819. doi:10.1002/smll.202000819
  • Gomez-Zorita S, Trepiana J, Gonzalez-Arceo M, et al. Anti-obesity effects of microalgae. Int J Mol Sci. 2019;21(1):41–62. doi:10.3390/ijms21010041
  • Yasa O, Erkoc P, Alapan Y, Sitti M. Microalga-powered microswimmers toward active cargo delivery. Adv Mater. 2018;30(45):e1804130. doi:10.1002/adma.201804130
  • Chen H, Cheng Y, Tian J, et al. Dissolved oxygen from microalgae-gel patch promotes chronic wound healing in diabetes. Sci Adv. 2020;6(20):eaba4311. doi:10.1126/sciadv.aba4311
  • de Andrade AF, Porto ALF, Bezerra RP. Photosynthetic microorganisms and their bioactive molecules as new product to healing wounds. Appl Microbiol Biot. 2022;106(2):497–504. doi:10.1007/s00253-021-11745-6
  • Ceylan H, Giltinan J, Kozielski K, Sitti M. Mobile microrobots for bioengineering applications. Lab Chip. 2017;17(10):1705–1724. doi:10.1039/c7lc00064b
  • Miller DH, Lamport DT, Miller M. Hydroxyproline heterooligosaccharides in Chlamydomonas. Science. 1972;176(4037):918–920. doi:10.1126/science.176.4037.918
  • Hosseinidoust Z, Mostaghaci B, Yasa O, Park BW, Singh AV, Sitti M. Bioengineered and biohybrid bacteria-based systems for drug delivery. Adv Drug Deliv Rev. 2016;106(Pt A):27–44. doi:10.1016/j.addr.2016.09.007
  • Shchelik IS, Molino JVD, Gademann K. Biohybrid microswimmers against bacterial infections. Acta Biomater. 2021;136:99–110. doi:10.1016/j.actbio.2021.09.048
  • Shamriz S, Ofoghi H. Outlook in the application of Chlamydomonas reinhardtii chloroplast as a platform for recombinant protein production. Biotechnol Genet Eng. 2016;32(1–2):92–106. doi:10.1080/02648725.2017.1307673
  • Jarquin-Cordero M, Chavez MN, Centeno-Cerdas C, et al. Towards a biotechnological platform for the production of human pro-angiogenic growth factors in the green alga Chlamydomonas reinhardtii. Appl Microbiol Biotechnol. 2020;104(2):725–739. doi:10.1007/s00253-019-10267-6
  • Wang H, Guo Y, Wang C, et al. Light-controlled oxygen production and collection for sustainable photodynamic therapy in tumor hypoxia. Biomaterials. 2021;269:120621. doi:10.1016/j.biomaterials.2020.120621
  • Hsu HY, Jeyashoke N, Yeh CH, Song YJ, Hua KF, Chao LK. Immunostimulatory bioactivity of algal polysaccharides from Chlorella pyrenoidosa activates macrophages via Toll-like receptor 4. J Agric Food Chem. 2010;58(2):927–936. doi:10.1021/jf902952z
  • Ferrazzano GF, Papa C, Pollio A, Ingenito A, Sangianantoni G, Cantile T. Cyanobacteria and microalgae as sources of functional foods to improve human general and oral health. Molecules. 2020;25(21):5164–5181. doi:10.3390/molecules25215164
  • Lin PY, Tsai CT, Chuang WL, et al. Chlorella sorokiniana induces mitochondrial-mediated apoptosis in human non-small cell lung cancer cells and inhibits xenograft tumor growth in vivo. BMC Complement Altern Med. 2017;17(1):88. doi:10.1186/s12906-017-1611-9
  • Zhuang X, Huang Y, Zhang D, Tao L, Li Y. Research status and prospect on hot water extract of Chlorella: the high value-added bioactive substance from Chlorella. Sheng wu Gong Cheng xue bao. 2015;31(1):24–42.
  • Tajul Arifin K, Sulaiman S, Md Saad S, Ahmad Damanhuri H, Wan Ngah WZ, Mohd Yusof YA. Elevation of tumour markers TGF-beta, M2-PK, OV-6 and AFP in hepatocellular carcinoma (HCC)-induced rats and their suppression by microalgae Chlorella vulgaris. BMC Cancer. 2017;17(1):879. doi:10.1186/s12885-017-3883-3
  • Wang H, Liu H, Guo Y, et al. Photosynthetic microorganisms coupled photodynamic therapy for enhanced antitumor immune effect. Bioact Mater. 2022;12:97–106. doi:10.1016/j.bioactmat.2021.10.028
  • Wilhelm S, Tavares AJ, Dai Q, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1(5):16014. doi:10.1038/natrevmats.2016.14
  • Park SM, Aalipour A, Vermesh O, Yu JH, Gambhir SS. Towards clinically translatable in vivo nanodiagnostics. Nat Rev Mater. 2017;2(5):17014. doi:10.1038/natrevmats.2017.14
  • Qiao Y, Yang F, Xie T, et al. Engineered algae: a novel oxygen-generating system for effective treatment of hypoxic cancer. Sci Adv. 2020;6(21):eaba5996. doi:10.1126/sciadv.aba5996
  • Zea-Obando C, Tunin-Ley A, Turquet J, et al. Anti-bacterial adhesion activity of tropical microalgae extracts. Molecules. 2018;23(9):2180. doi:10.3390/molecules23092180
  • Hwang HR, Lee ES, Kang SM, Chung KH, Kim BI. Effect of antimicrobial photodynamic therapy with Chlorella and Curcuma extract on Streptococcus mutans biofilms. Photodiagnosis Photodyn Ther. 2021;35:102411. doi:10.1016/j.pdpdt.2021.102411
  • Panahi Y, Mostafazadeh B, Abrishami A, et al. Investigation of the effects of Chlorella vulgaris supplementation on the modulation of oxidative stress in apparently healthy smokers. Clin Lab. 2013;59(5–6):579–587. doi:10.7754/clin.lab.2012.120110
  • Guo W, Zhu S, Li S, Feng Y, Wu H, Zeng M. Microalgae polysaccharides ameliorates obesity in association with modulation of lipid metabolism and gut microbiota in high-fat-diet fed C57BL/6 mice. Int J Biol Macromol. 2021;182:1371–1383. doi:10.1016/j.ijbiomac.2021.05.067
  • Ebrahimi-Mameghani M, Sadeghi Z, Abbasalizad Farhangi M, Vaghef-Mehrabany E, Aliashrafi S. Glucose homeostasis, insulin resistance and inflammatory biomarkers in patients with non-alcoholic fatty liver disease: beneficial effects of supplementation with microalgae Chlorella vulgaris: a double-blind placebo-controlled randomized clinical trial. Clin Nutr. 2017;36(4):1001–1006. doi:10.1016/j.clnu.2016.07.004
  • Schuergers N, Mullineaux CW, Wilde A. Cyanobacteria in motion. Curr Opin Plant Biol. 2017;37:109–115. doi:10.1016/j.pbi.2017.03.018
  • Li J, Esteban-Fernandez de Avila B, Gao W, Zhang L, Wang J. Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci Robot. 2017;2(4):eaam6431. doi:10.1126/scirobotics.aam6431
  • Martel S. Beyond imaging: macro- and microscale medical robots actuated by clinical MRI scanners. Sci Robot. 2017;2(3):eaam8119. doi:10.1126/scirobotics.aam8119
  • Yan X, Xu J, Zhou Q, et al. Molecular cargo delivery using multicellular magnetic microswimmers. Appl Mater Today. 2019;15:242–251. doi:10.1016/j.apmt.2019.02.006
  • Wang X, Cai J, Sun L, et al. Facile fabrication of magnetic microrobots based on spirulina templates for targeted delivery and synergistic chemo-photothermal therapy. ACS Appl Mater Interfaces. 2019;11(5):4745–4756. doi:10.1021/acsami.8b15586
  • Lupatini AL, Colla LM, Canan C, Colla E. Potential application of microalga Spirulina platensis as a protein source. J Sci Food Agr. 2017;97(3):724–732. doi:10.1002/jsfa.7987
  • Liu Q, Huang YH, Zhang RH, Cai TG, Cai Y. Medical application of spirulina platensis derived c-phycocyanin. Evid Based Compl Alt. 2016;7803846. doi:10.1155/2016/7803846
  • Zhang H, Shahbazi MA, Makila EM, et al. Diatom silica microparticles for sustained release and permeation enhancement following oral delivery of prednisone and mesalamine. Biomaterials. 2013;34(36):9210–9219. doi:10.1016/j.biomaterials.2013.08.035
  • Kumeria T, Bariana M, Altalhi T, et al. Graphene oxide decorated diatom silica particles as new nano-hybrids: towards smart natural drug microcarriers. J Mater Chem B. 2013;1(45):6302–6311. doi:10.1039/c3tb21051k
  • Rea I, Martucci NM, De Stefano L, et al. Diatomite biosilica nanocarriers for siRNA transport inside cancer cells. Biochim Biophys Acta. 2014;1840(12):3393–3403. doi:10.1016/j.bbagen.2014.09.009
  • Granito RN, Custodio MR, Renno ACM. Natural marine sponges for bone tissue engineering: the state of art and future perspectives. J Biomed Mater Res B Appl Biomater. 2017;105(6):1717–1727. doi:10.1002/jbm.b.33706
  • Wang X, Schroder HC, Grebenjuk V, et al. The marine sponge-derived inorganic polymers, biosilica and polyphosphate, as morphogenetically active matrices/scaffolds for the differentiation of human multipotent stromal cells: potential application in 3D printing and distraction osteogenesis. Mar Drugs. 2014;12(2):1131–1147. doi:10.3390/md12021131
  • Feng C, Li J, Wu GS, et al. Chitosan-coated diatom silica as hemostatic agent for hemorrhage control. ACS Appl Mater Interfaces. 2016;8(50):34234–34243. doi:10.1021/acsami.6b12317
  • Li J, Han J, Sun Q, et al. Biosynthetic calcium-doped biosilica with multiple hemostatic properties for hemorrhage control. J Mater Chem B. 2018;6(47):7834–7841. doi:10.1039/c8tb00667a
  • Wang P, Li X, Yao C, et al. Orthogonal near-infrared upconversion co-regulated site-specific O2 delivery and photodynamic therapy for hypoxia tumor by using red blood cell microcarriers. Biomaterials. 2017;125:90–100. doi:10.1016/j.biomaterials.2017.02.017
  • Sahu A, Kwon I, Tae G. Improving cancer therapy through the nanomaterials-assisted alleviation of hypoxia. Biomaterials. 2020;228:119578. doi:10.1016/j.biomaterials.2019.119578
  • Li W, Zhong D, Hua S, Du Z, Zhou M. Biomineralized biohybrid algae for tumor hypoxia modulation and cascade radio-photodynamic therapy. ACS Appl Mater Interfaces. 2020;12(40):44541–44553. doi:10.1021/acsami.0c14400
  • Zhong D, Li W, Hua S, et al. Calcium phosphate engineered photosynthetic microalgae to combat hypoxic-tumor by in-situ modulating hypoxia and cascade radio-phototherapy. Theranostics. 2021;11(8):3580–3594. doi:10.7150/thno.55441
  • Agostinis P, Berg K, Cengel KA, et al. Photodynamic therapy of cancer: an update. CA Cancer J Clin. 2011;61(4):250–281. doi:10.3322/caac.20114
  • Saberi S, Khoobi M, Alaeddini M, et al. The effect of photodynamic therapy on head and neck squamous cell carcinoma cell lines using spirulina platensis with different laser energy densities. Photodiagnosis Photodyn Ther. 2021;37:102688. doi:10.1016/j.pdpdt.2021.102688
  • Henderson BW, Fingar VH. Relationship of tumor hypoxia and response to photodynamic treatment in an experimental mouse tumor. Cancer Res. 1987;47(12):3110–3114.
  • Li X, Kwon N, Guo T, Liu Z, Yoon J. Innovative strategies for hypoxic-tumor photodynamic therapy. Angew Chem Int Ed. 2018;57(36):11522–11531. doi:10.1002/anie.201805138
  • Zhou TJ, Xing L, Fan YT, Cui PF, Jiang HL. Light triggered oxygen-affording engines for repeated hypoxia-resistant photodynamic therapy. J Control Release. 2019;307:44–54. doi:10.1016/j.jconrel.2019.06.016
  • Delasoie J, Schiel P, Vojnovic S, Nikodinovic-Runic J, Zobi F. Photoactivatable surface-functionalized diatom microalgae for colorectal cancer targeted delivery and enhanced cytotoxicity of anticancer complexes. Pharmaceutics. 2020;12(5):12050480. doi:10.3390/pharmaceutics12050480
  • Astolfi L, Ghiselli S, Guaran V, et al. Correlation of adverse effects of cisplatin administration in patients affected by solid tumours: a retrospective evaluation. Oncol Rep. 2013;29(4):1285–1292. doi:10.3892/or.2013.2279
  • Delalat B, Sheppard VC, Rasi Ghaemi S, et al. Targeted drug delivery using genetically engineered diatom biosilica. Nat Commun. 2015;6(1):8791. doi:10.1038/ncomms9791
  • Akolpoglu MB, Dogan NO, Bozuyuk U, Ceylan H, Kizilel S, Sitti M. High-yield production of biohybrid microalgae for on-demand cargo delivery. Adv Sci. 2020;7(16):2001256. doi:10.1002/advs.202001256
  • Abd El-Hack ME, Abdelnour S, Alagawany M, et al. Microalgae in modern cancer therapy: current knowledge. Biomed Pharmacother. 2019;111:42–50. doi:10.1016/j.biopha.2018.12.069
  • Somasekharan SP, El-Naggar A, Sorensen PH, Wang Y, Cheng H. An aqueous extract of marine microalgae exhibits antimetastatic activity through preferential killing of suspended cancer cells and anticolony forming activity. Evid Based Complement Alternat Med. 2016;2016:9730654. doi:10.1155/2016/9730654
  • Bottone C, Camerlingo R, Miceli R, et al. Antioxidant and anti-proliferative properties of extracts from heterotrophic cultures of Galdieria sulphuraria. Nat Prod Res. 2019;33(11):1659–1663. doi:10.1080/14786419.2018.1425853
  • Suh SS, Yang EJ, Lee SG, et al. Bioactivities of ethanol extract from the Antarctic freshwater microalga, Chloromonas sp. Int J Med Sci. 2017;14(6):560–569. doi:10.7150/ijms.18702
  • Miceli M, Cutignano A, Conte M, et al. Monoacylglycerides from the diatom Skeletonema marinoi induce selective cell death in cancer cells. Mar Drugs. 2019;17(11):625–641. doi:10.3390/md17110625
  • Phuong PTT, Lee S, Lee C, et al. Beta-carotene-bound albumin nanoparticles modified with chlorin e6 for breast tumor ablation based on photodynamic therapy. Colloids Surf B Biointerfaces. 2018;171:123–133. doi:10.1016/j.colsurfb.2018.07.016
  • Bharathiraja S, Manivasagan P, Oh YO, et al. Astaxanthin conjugated polypyrrole nanoparticles as a multimodal agent for photo-based therapy and imaging. Int J Pharm. 2017;517(1–2):216–225. doi:10.1016/j.ijpharm.2016.12.020
  • Tan H, Gao S, Zhuang Y, et al. R-Phycoerythrin induces SGC-7901 apoptosis by arresting cell cycle at S phase. Mar Drugs. 2016;14(9):166–176. doi:10.3390/md14090166
  • Jabeen A, Reeder B, Svistunenko D, et al. Effect of the photodynamic therapy applications with potent microalgae constituents on several types of tumor. IRBM. 2019;40(1):51–61. doi:10.1016/j.irbm.2018.11.003
  • Karakas CY, Tekarslan Sahin H, Inan B, Ozcimen D, Erginer YO. In vitro cytotoxic activity of microalgal extracts loaded nano-micro particles produced via electrospraying and microemulsion methods. Biotechnol Prog. 2019;35(6):e2876. doi:10.1002/btpr.2876
  • Mateos R, Perez-Correa JR, Dominguez H. Bioactive properties of marine phenolics. Mar Drugs. 2020;18(10):501–559. doi:10.3390/md18100501
  • Chen X, Song L, Wang H, et al. Partial characterization, the immune modulation and anticancer activities of sulfated polysaccharides from filamentous microalgae Tribonema sp. Molecules. 2019;24(2):322–333. doi:10.3390/molecules24020322
  • Bahramzadeh S, Tabarsa M, You S, Li C, Bita S. Purification, structural analysis and mechanism of murine macrophage cell activation by sulfated polysaccharides from Cystoseira indica. Carbohydr Polym. 2019;205:261–270. doi:10.1016/j.carbpol.2018.10.022
  • Sushytskyi L, Lukac P, Synytsya A, et al. Immunoactive polysaccharides produced by heterotrophic mutant of green microalga Parachlorella kessleri HY1 (Chlorellaceae). Carbohydr Polym. 2020;246:116588. doi:10.1016/j.carbpol.2020.116588
  • Manzo E, Cutignano A, Pagano D, et al. A new marine-derived sulfoglycolipid triggers dendritic cell activation and immune adjuvant response. Sci Rep. 2017;7(1):6286. doi:10.1038/s41598-017-05969-8
  • Mai B, Gao Y, Li M, et al. Photodynamic antimicrobial chemotherapy for Staphylococcus aureus and multidrug-resistant bacterial burn infection in vitro and in vivo. Int J Nanomed. 2017;12:5915–5931. doi:10.2147/IJN.S138185
  • Brem H, Stojadinovic O, Diegelmann RF, et al. Molecular markers in patients with chronic wounds to guide surgical debridement. Mol Med. 2007;13(1–2):30–39. doi:10.2119/2006-00054.Brem
  • Wilkinson HN, Hardman MJ. Wound healing: cellular mechanisms and pathological outcomes. Open Biol. 2020;10(9):200223. doi:10.1098/rsob.200223
  • Younis I. Role of oxygen in wound healing. J Wound Care. 2020;29(5):S4–S10. doi:10.12968/jowc.2020.29.Sup5b.S4
  • Dissemond J, Kroger K, Storck M, Risse A, Engels P. Topical oxygen wound therapies for chronic wounds: a review. J Wound Care. 2015;24(2):53–54,56–60,62–63. doi:10.12968/jowc.2015.24.2.53
  • James CV, Park SY, Alabi D, Lantis JC 2nd. Effect of topical oxygen therapy on chronic wounds. Surg Technol Int. 2021;39:51–57. doi:10.52198/21.STI.39.WH1456
  • Hajhosseini B, Kuehlmann BA, Bonham CA, Kamperman KJ, Gurtner GC. Hyperbaric oxygen therapy: descriptive review of the technology and current application in chronic wounds. Plast Reconstr Surg Glob Open. 2020;8(9):e3136. doi:10.1097/GOX.0000000000003136
  • Nik Hisamuddin NAR, Wan Mohd Zahiruddin WN, Mohd Yazid B, Rahmah S. Use of hyperbaric oxygen therapy (HBOT) in chronic diabetic wound - A randomised trial. Med J Malaysia. 2019;74(5):418–424.
  • Heyboer M 3rd, Sharma D, Santiago W, McCulloch N. Hyperbaric oxygen therapy: side effects defined and quantified. Adv Wound Care. 2017;6(6):210–224. doi:10.1089/wound.2016.0718
  • Hopfner U, Schenck TL, Chavez MN, et al. Development of photosynthetic biomaterials for in vitro tissue engineering. Acta Biomater. 2014;10(6):2712–2717. doi:10.1016/j.actbio.2013.12.055
  • Centeno-Cerdas C, Jarquin-Cordero M, Chavez MN, et al. Development of photosynthetic sutures for the local delivery of oxygen and recombinant growth factors in wounds. Acta Biomater. 2018;81:184–194. doi:10.1016/j.actbio.2018.09.060
  • Chavez MN, Schenck TL, Hopfner U, et al. Towards autotrophic tissue engineering: photosynthetic gene therapy for regeneration. Biomaterials. 2016;75:25–36. doi:10.1016/j.biomaterials.2015.10.014
  • Schenck TL, Hopfner U, Chavez MN, et al. Photosynthetic biomaterials: a pathway towards autotrophic tissue engineering. Acta Biomater. 2015;15:39–47. doi:10.1016/j.actbio.2014.12.012
  • Edwards R, Harding KG. Bacteria and wound healing. Curr Opin Infect Dis. 2004;17(2):91–96. doi:10.1097/00001432-200404000-00004
  • Mihai MM, Dima MB, Dima B, Holban AM. Nanomaterials for wound healing and infection control. Materials. 2019;12(13):13. doi:10.3390/ma12132176
  • Yu R, Zhang H, Guo B. Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering. Nanomicro Lett. 2021;14(1):1. doi:10.1007/s40820-021-00751-y
  • Li W, Wang S, Zhong D, Du Z, Zhou M. A bioactive living hydrogel: photosynthetic bacteria mediated hypoxia elimination and bacteria-killing to promote infected wound healing. Adv Ther. 2021;4(1):2000107. doi:10.1002/adtp.202000107
  • Hu H, Zhong D, Li W, et al. Microalgae-based bioactive hydrogel loaded with quorum sensing inhibitor promotes infected wound healing. Nano Today. 2022;42:101368. doi:10.1016/j.nantod.2021.101368
  • Shannon E, Abu-Ghannam N. Antibacterial derivatives of marine algae: an overview of pharmacological mechanisms and applications. Mar Drugs. 2016;14(4):4. doi:10.3390/md14040081
  • Pierre G, Sopena V, Juin C, Mastouri A, Graber M, Maugard T. Antibacterial activity of a sulfated galactan extracted from the marine alga Chaetomorpha aerea against Staphylococcus aureus. Biotechnol Bioprocess Eng. 2011;16(5):937–945. doi:10.1007/s12257-011-0224-2
  • Kadam SU, O’Donnell CP, Rai DK, et al. Laminarin from Irish brown seaweeds Ascophyllum nodosum and Laminaria hyperborea: ultrasound assisted extraction, characterization and bioactivity. Mar Drugs. 2015;13(7):4270–4280. doi:10.3390/md13074270
  • Vijayabaskar P, Vaseela N, Thirumaran G. Potential antibacterial and antioxidant properties of a sulfated polysaccharide from the brown marine algae Sargassum swartzii. Chin J Nat Med. 2012;10(6):421–428. doi:10.1016/S1875-5364(12)60082-X
  • Susilowati R, Sabdono A, Widowati I. Isolation and characterization of bacteria associated with brown algae Sargassum spp. from Panjang Island and their antibacterial activities. Proc Environ Sci. 2015;23:240–246. doi:10.1016/j.proenv.2015.01.036
  • El Shafay SM, Ali SS, El-Sheekh MM. Antimicrobial activity of some seaweeds species from Red sea, against multidrug resistant bacteria. Egyp J Aquat Res. 2016;42(1):65–74. doi:10.1016/j.ejar.2015.11.006
  • Wei Y, Liu Q, Xu C, Yu J, Zhao L, Guo Q. Damage to the membrane permeability and cell death of Vibrio parahaemolyticus caused by phlorotannins with low molecular weight from Sargassum thunbergii. J Aq Food Prod Technol. 2016;25(3):323–333. doi:10.1080/10498850.2013.851757
  • Lee J-H, Eom S-H, Lee E-H. In vitro antibacterial and synergistic effect of phlorotannins isolated from edible brown seaweed Eisenia bicyclis against acne-related bacteria. Algae. 2014;29(1):47–55. doi:10.4490/algae.2014.29.1.047
  • Koh TJ, DiPietro LA. Inflammation and wound healing: the role of the macrophage. Expert Rev Mol Med. 2011;13:e23. doi:10.1017/S1462399411001943
  • Tazeze H, Mequanente S, Nigussie D, Legesse B, Makonnen E, Mengie T. Investigation of wound healing and anti-inflammatory activities of leaf gel of Aloe trigonantha L.C. leach in Rats. J Inflamm Res. 2021;14:5567–5580. doi:10.2147/JIR.S339289
  • Chen ZC, Wu SS, Su WY, et al. Anti-inflammatory and burn injury wound healing properties of the shell of Haliotis diversicolor. BMC Complement Altern Med. 2016;16(1):487. doi:10.1186/s12906-016-1473-6
  • Avila-Roman J, Garcia-Gil S, Rodriguez-Luna A, Motilva V, Talero E. Anti-inflammatory and anticancer effects of microalgal carotenoids. Mar Drugs. 2021;19(10). doi:10.3390/md19100531
  • Choo WT, Teoh ML, Phang SM, et al. Microalgae as potential anti-inflammatory natural product against human inflammatory skin diseases. Front Pharmacol. 2020;11:1086. doi:10.3389/fphar.2020.01086
  • Miguel SP, Ribeiro MP, Otero A, Coutinho P. Application of microalgae and microalgal bioactive compounds in skin regeneration. Algal Res. 2021;58:102395. doi:10.1016/j.algal.2021.102395
  • Jorge MP, Madjarof C, Gois Ruiz AL, et al. Evaluation of wound healing properties of Arrabidaea chica Verlot extract. J Ethnopharmacol. 2008;118(3):361–366. doi:10.1016/j.jep.2008.04.024
  • Roth GA, Mensah GA, Johnson CO, et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J Am Coll Cardiol. 2020;76(25):2982–3021. doi:10.1016/j.jacc.2020.11.010
  • Lin YD, Luo CY, Hu YN, et al. Instructive nanofiber scaffolds with VEGF create a microenvironment for arteriogenesis and cardiac repair. Sci Transl Med. 2012;4(146):146ra109. doi:10.1126/scitranslmed.3003841
  • Fox IJ, Daley GQ, Goldman SA, Huard J, Kamp TJ, Trucco M. Stem cell therapy. Use of differentiated pluripotent stem cells as replacement therapy for treating disease. Science. 2014;345(6199):1247391. doi:10.1126/science.1247391
  • Huang S, Yang Y, Yang Q, Zhao Q, Ye X. Engineered circulatory scaffolds for building cardiac tissue. J Thorac Dis. 2018;10(20):S2312–S2328. doi:10.21037/jtd.2017.12.92
  • Stapleton LM, Farry JM, Lucian HJ, et al. Abstract 15828: cyanobacteria-alginate microgels for sustained photosynthetic oxygen delivery to rescue cardiomyocytes in an ischemic milieu. Circulation. 2019;140(1):A15828–A15828. doi:10.1161/circ.140.suppl_1.15828