384
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Augmented in vitro and in vivo Profiles of Brimonidine Tartrate Using Gelatinized-Core Liposomes

, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2753-2776 | Published online: 25 Jun 2022

References

  • Weng Y, Liu J, Jin S, Guo W, Liang X, Hu Z. Nanotechnology-based strategies for treatment of ocular disease. Acta Pharm Sin B. 2017;7(3):281–291. doi:10.1016/j.apsb.2016.09.001
  • Cholkar K, Dasari SR, Pal D, Mitra AK. Eye: anatomy, physiology and barriers to drug delivery. In: Ocular Transporters and Receptors. Elsevier; 2013:1–36.
  • El Hoffy NM, Azim EAA, Hathout RM, Fouly MA, Elkheshen SA. Glaucoma: management and future perspectives for nanotechnology-based treatment modalities. Eur J Pharm Sci. 2020;158:105648. doi:10.1016/j.ejps.2020.105648
  • Mandal A, Gote V, Pal D, Ogundele A, Mitra AK. Ocular pharmacokinetics of a topical ophthalmic nanomicellar solution of cyclosporine (Cequa®) for dry eye disease. Pharm Res. 2019;36(2):1–21. doi:10.1007/s11095-018-2556-5
  • Prakash P, Gnanaprakasam P, Emmanuel R, Arokiyaraj S, Saravanan M. Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids Surf B Biointerfaces. 2013;108:255–259. doi:10.1016/j.colsurfb.2013.03.017
  • Yamamoto T, Yokoyama M, Opanasopit P, Hayama A, Kawano K, Maitani Y. What are determining factors for stable drug incorporation into polymeric micelle carriers? Consideration on physical and chemical characters of the micelle inner core. J Control Release. 2007;123(1):11–18. doi:10.1016/j.jconrel.2007.07.008
  • Naguib SS, Hathout RM, Mansour S. Optimizing novel penetration enhancing hybridized vesicles for augmenting the in-vivo effect of an anti-glaucoma drug. Drug Deliv. 2017;24(1):99–108. doi:10.1080/10717544.2016.1233588
  • Hathout RM, Omran MK. Gelatin-based particulate systems in ocular drug delivery. Pharm Dev Technol. 2016;21(3):379–386. doi:10.3109/10837450.2014.999786
  • Wheeler L, WoldeMussie E, Lai R. Role of alpha-2 agonists in neuroprotection. Surv Ophthalmol. 2003;48(2):S47–S51. doi:10.1016/S0039-6257(03)00004-3
  • WoldeMussie E, Ruiz G, Wijono M, Wheeler LA. Neuroprotection of retinal ganglion cells by brimonidine in rats with laser-induced chronic ocular hypertension. Invest Ophthalmol Vis Sci. 2001;42(12):2849–2855.
  • Adkins JC, Balfour JA. Brimonidine. Drugs Aging. 1998;12(3):225–241. doi:10.2165/00002512-199812030-00005
  • Hathout RM, Gad HA, Abdel-Hafez SM, et al. Gelatinized core liposomes: a new Trojan horse for the development of a novel timolol maleate glaucoma medication. Int J Pharm. 2019;556:192–199. doi:10.1016/j.ijpharm.2018.12.015
  • Abdel-Hafez SM, Hathout RM, Sammour OA. Towards better modeling of chitosan nanoparticles production: screening different factors and comparing two experimental designs. Int J Biol Macromol. 2014;64:334–340. doi:10.1016/j.ijbiomac.2013.11.041
  • Shokry M, Hathout RM, Mansour S. Exploring gelatin nanoparticles as novel nanocarriers for Timolol Maleate: augmented in-vivo efficacy and safe histological profile. Int J Pharm. 2018;545(1–2):229–239. doi:10.1016/j.ijpharm.2018.04.059
  • Pathan I. Transdermal delivery of ethosomes as a novel vesicular carrier for paroxetine hydrochloride: in vitro evaluation and In vivo study. Marmara Pharm J. 2016;20(1):1–6. doi:10.12991/mpj.201620113534
  • Ramadan AA, Eladawy SA, El-Enin ASMA, Hussein ZM. Development and investigation of timolol maleate niosomal formulations for the treatment of glaucoma. J Pharm Investig. 2020;50(1):59–70. doi:10.1007/s40005-019-00427-1
  • Abdel-Hafez SM, Hathout RM, Sammour OA. Curcumin-loaded ultradeformable nanovesicles as a potential delivery system for breast cancer therapy. Colloids Surf B Biointerfaces. 2018;167:63–72. doi:10.1016/j.colsurfb.2018.03.051
  • Nagargoje S, Phatak A, Bhingare C, Chaudhari S. Formulation and evaluation of ophthalmic delivery of fluconazole from ion activated in situ gelling system. Der Pharmacia Lettre. 2012;4(4):1228–1235.
  • Chen H, Chang X, Weng T, et al. A study of microemulsion systems for transdermal delivery of triptolide. J Control Release. 2004;98(3):427–436. doi:10.1016/j.jconrel.2004.06.001
  • Guinedi AS, Mortada ND, Mansour S, Hathout RM. Preparation and evaluation of reverse-phase evaporation and multilamellar niosomes as ophthalmic carriers of Acetazolamide. Int J Pharm. 2005;306(1–2):71–82. doi:10.1016/j.ijpharm.2005.09.023
  • Hathout RM, Mansour S, Mortada ND, Guinedi AS. Liposomes as an ocular delivery system for Acetazolamide: in vitro and in vivo studies. Aaps Pharmscitech. 2007;8(1):E1–E12. doi:10.1208/pt0801001
  • Aggarwal D, Kaur IP. Improved pharmacodynamics of timolol maleate from a mucoadhesive niosomal ophthalmic drug delivery system. Int J Pharm. 2005;290(1–2):155–159. doi:10.1016/j.ijpharm.2004.10.026
  • Efron N, Young G, Brennan NA. Ocular surface temperature. Curr Eye Res. 1989;8(9):901–906.
  • Annapurna M, Sushmitha M, Sevyatha V. Simultaneous determination of brimonidine tartrate and timolol maleate by first derivative and ratio derivative spectroscopy. J Anal Pharm Res. 2017;4(6):00120.
  • Podczeck F. Comparison of in vitro dissolution profiles by calculating mean dissolution time (MDT) or mean residence time (MRT). Int J Pharm. 1993;97(1–3):93–100. doi:10.1016/0378-5173(93)90129-4
  • Korsmeyer R, Gurny R, Doelker E, Buri P, Peppas N. Mechanisms of potassium chloride release from compressed, hydrophilic, polymeric matrices: effect of entrapped air. J Pharm Sci. 1983;72(10):1189–1191. doi:10.1002/jps.2600721021
  • Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15(1):25–35. doi:10.1016/0378-5173(83)90064-9
  • Peppas N Analysis of fickian and non-fickian drug release from polymers; 1985.
  • Peppas N. Analysis of fickian and non-fickian drug release from polymers. Pharm Acta Helv. 1985;60(4):110–111.
  • Sakar F, Özer A, Erdogan S, et al. Nano drug delivery systems and gamma radiation sterilization. Pharm Dev Technol. 2017;22(6):775–784. doi:10.3109/10837450.2016.1163393
  • Kaur IP, Aggarwal D, Singh H, Kakkar S. Improved ocular absorption kinetics of timolol maleate loaded into a bioadhesive niosomal delivery system. Graefes Arch Clin Exp Ophthalmol. 2010;248(10):1467–1472. doi:10.1007/s00417-010-1383-0
  • Litamoi J, Palya V, Sylla D. Quality control testing of contagious bovine pleuropneumonia live attenuated vaccine: standard operating procedures: food & agriculture org; 1996.
  • Zolner WJ. Quality-control analytical methods: a guide to quality control testing for the compounding pharmacist. Int J Pharm Compd. 2006;10(4):281.
  • Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008;3(2):163. doi:10.1038/nprot.2007.521
  • Melena J, Santafé J, Segarra J. The effect of topical diltiazem on the intraocular pressure in betamethasone-induced ocular hypertensive rabbits. J Pharmacol Exp Ther. 1998;284(1):278–282.
  • Shields MB. Textbook of Glaucoma. Williams & Wilkins; 1987.
  • Draize JH, Woodard G, Calvery HO. Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J Pharmacol Exp Ther. 1944;82(3):377–390.
  • Sharpe R. The Draize test—motivations for change. Food Chem Toxicol. 1985;23(2):139–143. doi:10.1016/0278-6915(85)90005-5
  • Shamim B. Alternatives to the Draize Eye Test. PharmaTutor. 2014;2(10):45–57.
  • Abozeid SM, Hathout RM, Abou-Aisha K. Silencing of the metastasis-linked gene, AEG-1, using siRNA-loaded cholamine surface-modified gelatin nanoparticles in the breast carcinoma cell line MCF-7. Colloids Surf B Biointerfaces. 2016;145:607–616. doi:10.1016/j.colsurfb.2016.05.066
  • Box GE, Cox DR. An analysis of transformations. J R Stat Soc. 1964;26(2):211–243.
  • Osborne J. Improving your data transformations: applying the Box-Cox transformation. Pract Assess Res Evaluation. 2010;15(1):12.
  • Essa EA. Effect of formulation and processing variables on the particle size of sorbitan monopalmitate niosomes. Asian J Pharm. 2014;4(4):1.
  • Kazi KM, Mandal AS, Biswas N, et al. Niosome: a future of targeted drug delivery systems. J Adv Pharm Technol Res. 2010;1(4):374. doi:10.4103/0110-5558.76435
  • Lelkes PI. Methodological Aspects Dealing with Stability Measurements of Liposomes in vitro Using the Carboxyfluorescein-Assay. Boca Raton, FL: CRC Press; 1984.
  • Ammar H, Haider M, Ibrahim M, El Hoffy N. In vitro and in vivo investigation for optimization of niosomal ability for sustainment and bioavailability enhancement of diltiazem after nasal administration. Drug Deliv. 2017;24(1):414–421. doi:10.1080/10717544.2016.1259371
  • hui-hui Z, qiu-hua L, zhi-jun Y, wei-san P, shu-fang N. Novel ophthalmic timolol meleate liposomal-hydrogel and its improved local glaucomatous therapeutic effect in vivo. Drug Deliv. 2011;18(7):502–510. doi:10.3109/10717544.2011.595839
  • El Kayal M, Nasr M, Mortada N, Elkheshen S. Optimization of the colloidal properties of different vesicular systems aiming to encapsulate (-)- epigallocatechin-3-gallate. Farmacia. 2020;68(1):97–110. doi:10.31925/farmacia.2020.1.14
  • Arnett EM, Harvey N, Johnson E, Johnston DS, Chapman D. No phospholipid monolayer-sugar interactions. Biochemistry. 1986;25(18):5239–5242. doi:10.1021/bi00366a038
  • Cadenhead D, Bean K. Selected lipid monolayers on aqueous-glycerol and aqueous-urea substrates. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1972;290:43–50. doi:10.1016/0005-2736(72)90050-8
  • Alonso-Romanowski S, Biondi A, Disalvo E. Effect of carbohydrates and glycerol on the stability and surface properties of lyophilized liposomes. J Membr Biol. 1989;108(1):1–11. doi:10.1007/BF01870420
  • Arceo E, Marsden P, Bergman RG, Ellman JA, An efficient didehydroxylation method for the biomass-derived polyols glycerol and erythritol. Mechanistic studies of a formic acid-mediated deoxygenation. Chem Comm. 2009;23:3357–3359. doi:10.1039/b907746d
  • Hathout RM, Gad HA, Metwally AA. Gelatinized‐core liposomes: toward a more robust carrier for hydrophilic molecules. J Biomed Mater Res A. 2017;105(11):3086–3092. doi:10.1002/jbm.a.36175
  • Kim NJ, Harris A, Gerber A, et al. Nanotechnology and glaucoma: a review of the potential implications of glaucoma nanomedicine. Br J Ophthalmol. 2014;98(4):427–431. doi:10.1136/bjophthalmol-2013-304028
  • Gruner SM. Intrinsic curvature hypothesis for biomembrane lipid composition: a role for nonbilayer lipids. Proc Natl Acad Sci. 1985;82(11):3665–3669. doi:10.1073/pnas.82.11.3665
  • Chiou G Topical treatment of ocular hypertension, glaucoma, ischemic retinopathy and age-related macular degeneration with ophthalmic formulation of dopamine antagonists: google patents; 2003.
  • Ahmed I, Chaudhuri B. Evaluation of buffer systems in ophthalmic product development. Int J Pharm. 1988;44(1–3):97–105. doi:10.1016/0378-5173(88)90105-6
  • Zhu H, Chauhan A. Effect of viscosity on tear drainage and ocular residence time. Optom Vis Sci. 2008;85(8):E715–E725. doi:10.1097/OPX.0b013e3181824dc4
  • Mura S, Manconi M, Sinico C, Valenti D, Fadda AM. Penetration enhancer-containing vesicles (PEVs) as carriers for cutaneous delivery of minoxidil. Int J Pharm. 2009;380(1–2):72–79. doi:10.1016/j.ijpharm.2009.06.040
  • Shen Y, Jin E, Zhang B, et al. Prodrugs forming high drug loading multifunctional nanocapsules for intracellular cancer drug delivery. J Am Chem Soc. 2010;132(12):4259–4265. doi:10.1021/ja909475m
  • Pattnaik S, Swain K, Mallick S, Lin Z. Effect of casting solvent on crystallinity of ondansetron in transdermal films. Int J Pharm. 2011;406(1–2):106–110. doi:10.1016/j.ijpharm.2011.01.009
  • Coleman NJ, Craig DQ. Modulated temperature differential scanning calorimetry: a novel approach to pharmaceutical thermal analysis. Int J Pharm. 1996;135(1–2):13–29. doi:10.1016/0378-5173(95)04463-9
  • De Souza JF, Maia KN, Patrício PSDO, et al. Ocular inserts based on chitosan and brimonidine tartrate: development, characterization and biocompatibility. J Drug Deliv Sci Technol. 2016;32:21–30. doi:10.1016/j.jddst.2016.01.008
  • Singh HK, Shinde AU. Development and evaluation of novel polymeric nanoparticles of brimonidine tartrate. Curr Drug Deliv. 2010;7(3):244–251. doi:10.2174/156720110791561008
  • Chapman D, Collin D. Differential thermal analysis of phospholipids. Nature. 1965;206(4980):189. doi:10.1038/206189a0
  • Demetzos C. Differential scanning calorimetry (DSC): a tool to study the thermal behavior of lipid bilayers and liposomal stability. J Liposome Res. 2008;18(3):159–173. doi:10.1080/08982100802310261
  • Mukherjee I, Rosolen M. Thermal transitions of gelatin evaluated using DSC sample pans of various seal integrities. J Therm Anal Calorim. 2013;114(3):1161–1166. doi:10.1007/s10973-013-3166-4
  • Kitayama H, Takechi Y, Tamai N, Matsuki H, Yomota C, Saito H. Thermotropic phase behavior of hydrogenated soybean phosphatidylcholine–cholesterol binary liposome membrane. Chem Pharm Bull (Tokyo). 2014;62(1):58–63. doi:10.1248/cpb.c13-00587
  • Maiti S, Paul S, Mondol R, Ray S, Sa B. Nanovesicular formulation of brimonidine tartrate for the management of glaucoma: in vitro and in vivo evaluation. Aaps Pharmscitech. 2011;12(2):755–763. doi:10.1208/s12249-011-9643-9
  • Fathalla D, Soliman G, Fouad E. Development and in vitro/in vivo evaluation of liposomal gels for the sustained ocular delivery of latanoprost. J Clin Exp Ophthalmol. 2015;6(390):2.
  • Sikkandar S, Jayakumar S, Gunasekaran S, Renugadevi T, Alwar B. Study on the analysis of human gallstones using Fourier transform infrared spectroscopic technique. Int J ChemTech Res. 2011;3(1):149–154.
  • Lai J-Y, Li Y-T. Influence of cross-linker concentration on the functionality of carbodiimide cross-linked gelatin membranes for retinal sheet carriers. J Biomater Sci Polym Ed. 2011;22(1–3):277–295. doi:10.1163/092050609X12603600753204
  • Lai J-Y, Hsieh A-C. A gelatin-g-poly (N-isopropylacrylamide) biodegradable in situ gelling delivery system for the intracameral administration of pilocarpine. Biomaterials. 2012;33(7):2372–2387. doi:10.1016/j.biomaterials.2011.11.085
  • Ritger PL, Peppas NA. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release. 1987;5(1):37–42. doi:10.1016/0168-3659(87)90035-6
  • Campbell M. Lipids and membranes. In: Campbell MK, editor. Biochemistry. New York, NY, USA: Saunders College Publishing; 1995:1423–1430.
  • Yeh M-K, Tung S-M, Lu D-W, Chen J-L, Chiang C-H. Formulation factors for preparing ocular biodegradable delivery system of 5-fluorouracil microparticles. J Microencapsul. 2001;18(4):507–519. doi:10.1080/02652040010018100
  • Maurice D. Kinetics of topically applied ophthalmic drugs. In: Ophthalmic Drug Delivery. Springer; 1987:19–26.
  • Balasubramaniam J, Kant S, Pandit JK. In vitro and in vivo evaluation of Gelrite® gellan gum-based ocular delivery system for indomethacin. ACTA PHARMACEUTICA-ZAGREB. 2003;53(4):251–262.
  • Singh J, Chhabra G, Pathak K. Development of Acetazolamide-loaded, pH-triggered polymeric nanoparticulate in situ gel for sustained ocular delivery: in vitro. ex vivo evaluation and pharmacodynamic study. Drug Dev Ind Pharm. 2014;40(9):1223–1232. doi:10.3109/03639045.2013.814061
  • Friess W. Collagen–biomaterial for drug delivery. Eur J Pharm Biopharm. 1998;45(2):113–136. doi:10.1016/s0939-6411(98)00017-4
  • Yousry C, Fahmy RH, Essam T, El-Laithy HM, Elkheshen SA. Nanoparticles as tool for enhanced ophthalmic delivery of vancomycin: a multidistrict-based microbiological study, solid lipid nanoparticles formulation and evaluation. Drug Dev Ind Pharm. 2016;42(11):1752–1762. doi:10.3109/03639045.2016.1171335
  • Yousry C, Elkheshen SA, El-Laithy HM, Essam T, Fahmy RH. Studying the influence of formulation and process variables on vancomycin-loaded polymeric nanoparticles as potential carrier for enhanced ophthalmic delivery. Eur J Pharm Sci. 2017;100:142–154. doi:10.1016/j.ejps.2017.01.013
  • Nagai N, Yoshioka C, Mano Y, et al. A nanoparticle formulation of disulfiram prolongs corneal residence time of the drug and reduces intraocular pressure. Exp Eye Res. 2015;132:115–123. doi:10.1016/j.exer.2015.01.022
  • Li J, Wu L, Wu W, et al. A potential carrier based on liquid crystal nanoparticles for ophthalmic delivery of pilocarpine nitrate. Int J Pharm. 2013;455(1–2):75–84. doi:10.1016/j.ijpharm.2013.07.057
  • Hathout RM. Particulate systems in the enhancement of the antiglaucomatous drug pharmacodynamics: a meta-analysis study. ACS omega. 2019;4(26):21909–21913. doi:10.1021/acsomega.9b02895
  • ElMasry SR, Hathout RM, Abdel-Halim M, Mansour M. In vitro transdermal delivery of sesamol using oleic acid chemically-modified gelatin nanoparticles as a potential breast cancer medication. J Drug Deliv Sci Technol. 2018;48:30–39. doi:10.1016/j.jddst.2018.08.017
  • Draize JH. Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J Pharmacol Exp Ther. 1944;82:377–390.
  • Ossama M, Hathout RM, Attia DA, Mortada ND. Enhanced Allicin Cytotoxicity on HEPG-2 Cells Using Glycyrrhetinic Acid Surface-Decorated Gelatin Nanoparticles. ACS Omega. 2019;4(6):11293-11300. doi:10.1021/acsomega.9b01580