322
Views
4
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Activated Carbon nanoparticles Loaded with Metformin for Effective Against Hepatocellular Cancer Stem Cells

, , , , &
Pages 2891-2910 | Received 05 Aug 2022, Accepted 16 Apr 2023, Published online: 31 May 2023

References

  • Parkin DM, Bray F, Ferlay J, Pisani P. Estimating the world cancer burden: globocan. Int J Cancer. 2000;94(2):153–156. doi:10.1002/ijc.1440
  • Hollstein MC, Wild CP, Bleicher F, et al. p53 mutations and aflatoxin B 1 exposure in hepatocellular carcinoma patients from Thailand. Int J Cancer. 1993;53:51–55. doi:10.1002/ijc.2910530111
  • Tong CM, Ma S, Guan XY. Biology of hepatic cancer stem cells. J Gastroenterol Hepatol. 2011;26:1229–1237. doi:10.1111/j.1440-1746.2011.06762.x
  • Block TM, Mehta AS, Fimmel CJ, Jordan R. Molecular viral oncology of hepatocellular carcinoma. Oncogene. 2003;22:5093–5107. doi:10.1038/sj.onc.1206557
  • Song Y-J, Zhang S-S, Guo X-L, et al. Autophagy contributes to the survival of CD133+ liver cancer stem cells in the hypoxic and nutrient-deprived tumor microenvironment. Cancer Lett. 2013;339:70–81. doi:10.1016/j.canlet.2013.07.021
  • Gish RG. Hepatocellular carcinoma: overcoming challenges in disease management. Clin Gastroenterol Hepatol. 2006;4:252–261. doi:10.1016/j.cgh.2006.01.001
  • Marquardt JU, Factor VM, Thorgeirsson SS. Epigenetic regulation of cancer stem cells in liver cancer: current concepts and clinical implications. J Hepatol. 2010;53:568–577. doi:10.1016/j.jhep.2010.05.003
  • Boman BM, Wicha MS. Cancer stem cells: a step toward the cure. J Clin Oncol. 2008;26:2795–2799. doi:10.1200/JCO.2008.17.7436
  • Burgos-Ojeda D, Rueda BR, Buckanovich RJ. Ovarian cancer stem cell markers: prognostic and therapeutic implications. Cancer Lett. 2012;322:1–7. doi:10.1016/j.canlet.2012.02.002
  • Lobo NA, Shimono Y, Qian D, Clarke MF. The biology of cancer stem cells. Annu Rev Cell Dev Biol. 2007;23:675–699. doi:10.1146/annurev.cellbio.22.010305.104154
  • Ma S, Lee TK, Zheng BJ, Chan KW, Guan XY. CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene. 2008;27:1749–1758. doi:10.1038/sj.onc.1210811
  • Ma S, Chan KW, Hu L, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology. 2007;132:2542–2556. doi:10.1053/j.gastro.2007.04.025
  • Suetsugu A, Nagaki M, Aoki H, Motohashi T, Kunisada T, Moriwaki H. Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun. 2006;351:820–824. doi:10.1016/j.bbrc.2006.10.128
  • Stephanie M. Biology and clinical implications of CD133+liver cancer stem cells. Exp Cell Res. 2013;319:126–132. doi:10.1016/j.yexcr.2012.09.007
  • Dowling R, Goodwin P, Stambolic V. Understanding the benefit of metformin use in cancer treatment. BMC Med. 2011;9:33. doi:10.1186/1741-7015-9-33
  • Yang Q, Zhang T, Wang C, Jiao J, Li J, Deng Y. Coencapsulation of epirubicin and metformin in PEGylated liposomes inhibits the recurrence of murine sarcoma S180 existing CD133+cancer stem-like cells. Eur J Pharma Biopharmaceut. 2014;88:737–745. doi:10.1016/j.ejpb.2014.10.006
  • Zhang P, Li H, Tan X, Chen L, Wang S. Association of metformin use with cancer incidence and mortality: a meta-analysis. Cancer Epidemiol. 2013;37:207–218. doi:10.1016/j.canep.2012.12.009
  • Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res. 2009;69:7507–7511. doi:10.1158/0008-5472.CAN-09-2994
  • Vazquez-Martin A, Oliveras-Ferraros C, Barco SD, et al. The anti-diabetic drug metformin suppresses self-renewal and proliferation of trastuzumab-resistant tumor-initiating breast cancer stem cells. Menendez Breast Cancer Res Treat. 2011;126:355–364. doi:10.1007/s10549-010-0924-x
  • Vazquez-Martin A, Oliveras-Ferraros C, Cu Fi S, Del Barco S, Martin-Ca Stillo B, Menendez JA. Metformin regulates breast cancer stem cell ontogeny by transcriptional regulation of the epithelial–mesenchymal transition (EMT) status. Cell Cycle. 2010;9:3807–3814. doi:10.4161/cc.9.18.13131
  • Bao B, Wang Z, Ali S, et al. Metformin inhibits cell proliferation, migration and invasion by attenuating CSC function mediated by deregulating miRNAs in pancreatic cancer cells. Cancer Prev Res. 2012;5:355–364. doi:10.1158/1940-6207.CAPR-11-0299
  • Qiu-Lian Q, Ying-Ge Z. Effects of activated carbon nanoparticles on human gastric carcinoma cell line BGC-823 in vitro. Military Med Sci. 2009;33(1):29–32.
  • Peng F. The Mode of Cross-Membrane Transferring and Biological Effects of Nanoparticles Doctoral dissertation. Zhengzhou University; 2011:27–36.
  • Sun L, Cai Y, Liu Y, Song D, Liu, Y, Yao H, Zhang Y. Activated carbon nanoparticles as carriers of anticancer drugs. Nano Biomed Eng. 2013;5(2):94–101.
  • Yang Z, Zhao JX, Li PF, Zhang YG. Effects of activated carbon nanoparticles on anti cancer effect of 5-Fu. Bull Acad Mil Med Sci. 2009;33(5):416–420.
  • Zhang H, Sun L, Zhang YG. Intraperitoneal chemotherapy with mitomycin C bound to activated carbon nanoparticles using bioluminescence imaging technology. Mil Med Sci. 2011;35(4):299–302.
  • Qu QL, Zhang YG, Yang LZ, Sun L. Intraperitoneal chemotherapy with mitomycin C bound to activated carbon nanoparticles for nude mice bearing human gastric carcinoma. Zhonghua Zhong Liu Za Zhi. 2006;28(4):257–260. Chinese.
  • Zhong Y, Shuzheng M, Yingge Z. Using activated carbon nanoparticles to decrease the genotoxicity and teratogenicity of anticancer therapeutic agents. J Nanosci Nanotechnol. 2010;10(12):8603–8609.
  • Jiang S, Wang X, Zhang Z, et al. CD20 monoclonal antibody targeted nanoscale drug delivery system for doxorubicin chemotherapy: an in vitro study of cell lysis of CD20-positive Raji cells. Int J Nanomedicine. 2016;(11):5505–5518. doi:10.2147/IJN.S115428
  • Jumelle C, Mauclair C, Houzet J, et al. Delivery of macromolecules into the endothelium of whole ex vivo human cornea by femtosecond laser-activated carbon nanoparticles. Br J Ophthalmol. 2016;100(8):1151–1156. doi:10.1136/bjophthalmol-2015-307610
  • Xie J, Yong Y, Dong X, et al. Therapeutic nanoparticles based on curcumin and bamboo charcoal nanoparticles for chemo-photothermal synergistic treatment of cancer and radioprotection of normal cells. ACS Appl Mater Interfaces. 2017;9(16):14281–14291. doi:10.1021/acsami.7b02622
  • Yao HJ, Sun L, Liu Y, et al. Monodistearoylphosphatidylethanolamine-hyaluronic acid functionalization of single-walled carbon nanotubes for targeting intracellular drug delivery to overcome multidrug resistance of cancer cells. Carbon. 2016;96:362–376. doi:10.1016/j.carbon.2015.09.037
  • Yao H, Sun L, Li J, et al. A novel therapeutic siRNA nanoparticle designed for dual-targeting CD44 and Gli1 of gastric cancer stem cells. Int J Nanomedicine. 2020;15:7013–7034. doi:10.2147/IJN.S260163
  • Chen H, Luo Z, Dong L, et al. CD133/prominin-1-mediated autophagy and glucose uptake beneficial for hepatoma cell survival. PLoS One. 2013;8:e56878. doi:10.1371/journal.pone.0056878
  • Dontu G, Abdallah WM, Foley JM, et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003;17:1253–1270. doi:10.1101/gad.1061803
  • Dontu G, Jackson KW, McNicholas E, et al. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res. 2004;6:605–615. doi:10.1186/bcr920
  • Eyre R, Alférez DG, Spence K, et al. Patient-derived mammosphere and xenograft tumour initiation correlates with progression to metastasis. J Mammary Gland Biol Neoplasia. 2016;21(3–4):99–109. doi:10.1007/s10911-016-9361-8
  • Mariya S, Dewi FN, Suparto IH, et al. Mammosphere culture of mammary cells from cynomolgus macaques (Macaca fascicularis). Comp Med. 2019;69(2):144–150. doi:10.30802/AALAS-CM-18-000030
  • Liu J, Li M, Song B, et al. Metformin inhibits renal cell carcinoma in vitro and in vivo xenograft. Urol Oncol. 2013;31:264–270. doi:10.1016/j.urolonc.2011.01.003
  • Zhang X, Li F, Zheng Y, et al. Propofol reduced mammosphere formation of breast cancer stem cells via PD-L1/Nanog in vitro. Oxid Med Cell Longev. 2019;2019:9078209. doi:10.1155/2019/9078209
  • Klopp AH, Lacerda L, Gupta A, et al. Mesenchymal stem cells promote mammosphere formation and decrease E-cadherin in normal and malignant breast cells. PLoS One. 2010;5(8):e12180. doi:10.1371/journal.pone.0012180
  • Silva IA, Bai S, McLean K, et al. Aldehyde dehydrogenase in combination with CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival. Cancer Res. 2011;71:3991–4001. doi:10.1158/0008-5472.CAN-10-3175
  • Yao H-J, Zhang Y-G, Sun L, Liu Y. The effect of hyaluronic acid functionalize d carbon nanotubes loaded with salinomycin on gastric cancer stem cells. Biomaterials. 2014;35:9208–9223. doi:10.1016/j.biomaterials.2014.07.033
  • Evans JMM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD. Metformin and reduced risk of cancer in diabetic patients. Br Med J. 2005;530:1304–1305. doi:10.1136/bmj.38415.708634.F7
  • Bowker SL, Majumdar SR, Veugelers P, Johnson JA. Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care. 2006;29:254–258. doi:10.2337/diacare.29.02.06.dc05-1558
  • Libby G, Donnelly LA, Donnan PT, Alessi DR, Morris AD, Evans JMM. New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes. Diabetes Care. 2009;32:1620–1625. doi:10.2337/dc08-2175
  • Landman GW, Kleefstra N, van Hateren KJJ, Groenier KH, Gans RO, Bilo HJ. Metformin associated with lower cancer mortality in type 2 diabetes: ZODIAC-16. Diabetes Care. 2010;33:322–326. doi:10.2337/dc09-1380
  • Franciosi M, Lucisano G, Lapice E, Strippoli GF, Pellegrini F, Nicolucci A. Metformin therapy and risk of can- cer in patients with type 2 diabetes: systematic review. PLoS One. 2013;8:e71583. doi:10.1371/journal.pone.0071583
  • Decensi A, Puntoni M, Goodwin P, et al. Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prev Res. 2010;3:1451–1461. doi:10.1158/1940-6207.CAPR-10-0157
  • Miraglia S, Godfrey W, Yin AH, et al. A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood. 1997;90:5013–5021. doi:10.1182/blood.V90.12.5013
  • Yin AH, Miraglia S, Zanjani ED, et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood. 1997;90:5002–5012. doi:10.1182/blood.V90.12.5002
  • Wu Y, Wu PY. CD133 as a marker for cancer stem cells: progresses and concerns. Stem Cells Dev. 2009;18:1127–1134. doi:10.1089/scd.2008.0338
  • Missol-Kolka E, Karbanova J, Janich P, et al. Prominin-1 (CD133) is not restricted to stem cells located in the basal compartment of murine and human prostate. Prostate. 2011;71:254–267. doi:10.1002/pros.21239
  • Zhou F, Teng F, Deng P, Meng N, Song Z, Feng R. Recent progress of nano-drug delivery system for liver cancer treatment. Anticancer Agents Med Chem. 2018;17(14):1884–1897. doi:10.2174/1871520617666170713151149
  • Huang P, Wang X, Liang X, et al. Nano-, micro-, and macroscale drug delivery systems for cancer immunotherapy. Acta Biomater. 2019;85:1–26. doi:10.1016/j.actbio.2018.12.028
  • Fang Z, Pan S, Gao P, et al. Stimuli-responsive charge-reversal nano drug delivery system: the promising targeted carriers for tumor therapy. Int J Pharm. 2020;575:118841. doi:10.1016/j.ijpharm.2019.118841
  • Ashfaq UA, Riaz M, Yasmeen E, Yousaf MZ. Recent advances in nanoparticle-based targeted drug-delivery systems against cancer and role of tumor microenvironment. Crit Rev Ther Drug Carrier Syst. 2017;34(4):317–353. doi:10.1615/CritRevTherDrugCarrierSyst.2017017845
  • Xue J, Li R, Gao D, Chen F, Xie H. CXCL12/CXCR4 axis-targeted dual-functional nano-drug delivery system against ovarian cancer. Int J Nanomedicine. 2020;15:5701–5718. doi:10.2147/IJN.S257527
  • Mi X, Hu M, Dong M, et al. Folic acid decorated zeolitic imidazolate framework (ZIF-8) loaded with baicalin as a nano-drug delivery system for breast cancer therapy. Int J Nanomedicine. 2021;16:8337–8352. doi:10.2147/IJN.S340764
  • Yang X, Chen S, Liu X, Yu M, Liu X. Drug delivery based on nanotechnology for target bone disease. Curr Drug Deliv. 2019;16(9):782–792. doi:10.2174/1567201816666190917123948
  • Mokhtarzadeh A, Hassanpour S, Vahid ZF, et al. Nano-delivery system targeting to cancer stem cell cluster of differentiation biomarkers. J Control Release. 2017;266:166–186. doi:10.1016/j.jconrel.2017.09.028
  • Liu B, Yang W, Che C, et al. Drug delivery system of AS1411 functionalized graphene oxide based composites. Chem Open. 2021;10(4):408–413. doi:10.1002/open.202000226
  • Liu Y, Pu Y, Sun L, et al. Folic acid functionalized γ-Cyclodextrin C60, a novel vehicle for tumor-targeted drug delivery. J Biomed Nanotechnol. 2016;12:1393–1403. doi:10.1166/jbn.2016.2275
  • Wu HH, Zhou Y, Tabata Y, Gao JQ. Mesenchymal stem cell-based drug delivery strategy: from cells to biomimetic. J Control Release. 2019;294:102–113. doi:10.1016/j.jconrel.2018.12.019
  • Jain P, Kathuria H, Momin M. Clinical therapies and nano drug delivery systems for urinary bladder cancer. Pharmacol Ther. 2021;226:107871. doi:10.1016/j.pharmthera.2021.107871
  • Yu H, Jin F, Liu D, et al. ROS-responsive nano-drug delivery system combining mitochondria-targeting ceria nanoparticles with atorvastatin for acute kidney injury. Theranostics. 2020;10(5):2342–2357. doi:10.7150/thno.40395