392
Views
4
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Combined Thermosensitive Gel Co-Loaded with Dermaseptin-PP and PTX Liposomes for Effective Local Chemotherapy

, , , , , , , , & show all
Pages 413-424 | Received 08 Aug 2022, Accepted 13 Dec 2022, Published online: 21 Jan 2023

References

  • Siegel RL, Miller KD, Fuchs HE., et al. Cancer statistics, 2022. CA Cancer J Clin. 2022;72:7–33. doi:10.3322/caac.21708
  • Gaspar D, Veiga AS, Castanho MARB. From antimicrobial to anticancer peptides. A review. Front Microbiol. 2013;4:294. doi:10.3389/fmicb.2013.00294
  • Woodman C, Vundu G, George A, et al. Applications and strategies in nanodiagnosis and nanotherapy in lung cancer. Semin Cancer Biol. 2021;69:349–364. doi:10.1016/j.semcancer.2020.02.009
  • Chatterjee S. Mechanisms of resistance against cancer therapeutic drugs. Curr Pharm Biotechnol. 2014;15(12):1105–1112. doi:10.2174/1389201015666141126123952
  • Munker S, Gerken M, Fest P, et al. Chemotherapy for metastatic colon cancer: no effect on survival when the dose is reduced due to side effects. Bmc Cancer. 2018;18(1):455. doi:10.1186/s12885-018-4380-z
  • Ta HT, Dass CR, Dunstan DE. Injectable chitosan hydrogels for localised cancer therapy. J Controlled Release. 2008;126(3):205–216. doi:10.1016/j.jconrel.2007.11.018
  • Tang RZ, Liu ZZ, Gu SS, et al. Multiple local therapeutics based on nano-hydrogel composites in breast cancer treatment. J Materials Chem B. 2021;9(6):1521–1535. doi:10.1039/D0TB02737E
  • Sun S, Tang Q, Wang Y, et al. In situ micro–nano conversion augmented tumor-localized immunochemotherapy. ACS Appl Mater Interfaces. 2022;14:27013–27027. doi:10.1021/acsami.2c02490
  • Zhang D, Chu Y, Qian H, et al. Antitumor activity of thermosensitive hydrogels packaging gambogic acid nanoparticles and tumor-penetrating peptide iRGD against gastric cancer. Int J Nanomedicine. 2020;15:735–747. doi:10.2147/IJN.S231448
  • Gao B, Luo J, Liu Y, et al. Intratumoral administration of thermosensitive hydrogel co-loaded with norcantharidin nanoparticles and doxorubicin for the treatment of hepatocellular carcinoma. Int J Nanomedicine. 2021;16:4073–4085. doi:10.2147/IJN.S308057
  • Sanjana A, Ahmed MG, Bh JG. Preparation and evaluation of in-situ gels containing hydrocortisone for the treatment of aphthous ulcer. J Oral Biol Craniofacial Res. 2021;11(2):269–276. doi:10.1016/j.jobcr.2021.02.001
  • Cao D, Zhang X, Akabar MD, et al. Liposomal doxorubicin loaded PLGA-PEG-PLGA based thermogel for sustained local drug delivery for the treatment of breast cancer. Artif Cells, Nanomed Biotechnol. 2019;47(1):181–191. doi:10.1080/21691401.2018.1548470
  • Jung Y, Park W, Park H, et al. Thermo-sensitive injectable hydrogel based on the physical mixing of hyaluronic acid and Pluronic F-127 for sustained NSAID delivery. Carbohydr Polym. 2017;156:403–408. doi:10.1016/j.carbpol.2016.08.068
  • Liu Y, Lu WL, Wang JC, et al. Controlled delivery of recombinant hirudin based on thermo-sensitive Pluronic® F127 hydrogel for subcutaneous administration: in vitro and in vivo characterization. J Controlled Release. 2007;117(3):387–395. doi:10.1016/j.jconrel.2006.11.024
  • Goo YT, Yang HM, Kim CH, et al. Optimization of a floating poloxamer 407-based hydrogel using the Box-Behnken design: in vitro characterization and in vivo buoyancy evaluation for intravesical instillation. Eur J Pharmaceutical Sci. 2021;163:105885. doi:10.1016/j.ejps.2021.105885
  • Ageitos JM, Sánchez-Pérez A, Calo-Mata P, et al. Antimicrobial peptides (AMPs): ancient compounds that represent novel weapons in the fight against bacteria. Biochem Pharmacol. 2017;133:117–138. doi:10.1016/j.bcp.2016.09.018
  • Andreu D, Rivas L. Animal antimicrobial peptides: an overview. Peptide Sci. 1998;47(6):415–433. doi:10.1002/(SICI)1097-0282(1998)47:6<415::AID-BIP2>3.0.CO;2-D
  • Deslouches B, Di YP. Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications. Oncotarget. 2017;8(28):46635–46651. doi:10.18632/oncotarget.16743
  • Shi D, Hou X, Wang L, et al. Two novel dermaseptin-like antimicrobial peptides with anticancer activities from the skin secretion of Pachymedusa dacnicolor. Toxins. 2016;8(5):144. doi:10.3390/toxins8050144
  • Hancock REW, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 2006;24(12):1551–1557. doi:10.1038/nbt1267
  • Riedl S, Zweytick D, Lohner K. Membrane-active host defense peptides–challenges and perspectives for the development of novel anticancer drugs. Chem Phys Lipids. 2011;164(8):766–781. doi:10.1016/j.chemphyslip.2011.09.004
  • Long Q, Li L, Wang H, et al. Novel peptide dermaseptin‐PS 1 exhibits anticancer activity via induction of intrinsic apoptosis signalling. J Cell Mol Med. 2019;23(2):1300–1312. doi:10.1111/jcmm.14032
  • Tan Y, Chen X, Ma C, et al. Biological activities of cationicity-enhanced and hydrophobicity-optimized analogues of an antimicrobial peptide, dermaseptin-PS3, from the Skin Secretion of Phyllomedusa sauvagii. Toxins. 2018;10(8):320. doi:10.3390/toxins10080320
  • Dong Z, Hu H, Yu X, et al. Novel frog skin-derived peptide dermaseptin-PP for lung cancer treatment: in vitro/vivo evaluation and anti-tumor mechanisms study. Front Chem. 2020;8:476. doi:10.3389/fchem.2020.00476
  • Moret F, Gobbo M, Reddi E. Conjugation of photosensitisers to antimicrobial peptides increases the efficiency of photodynamic therapy in cancer cells. Photochem Photobiol Sci. 2015;14(7):1238–1250. doi:10.1039/c5pp00038f
  • Polyansky AA, Vassilevski AA, Volynsky PE, et al. N-terminal amphipathic helix as a trigger of hemolytic activity in antimicrobial peptides: a case study in latarcins. FEBS Lett. 2009;583(14):2425–2428. doi:10.1016/j.febslet.2009.06.044
  • Ahmad A, Yadav SP, Asthana N, et al. Utilization of an amphipathic leucine zipper sequence to design antibacterial peptides with simultaneous modulation of toxic activity against human red blood cells. J Biol Chem. 2006;281(31):22029–22038. doi:10.1074/jbc.M602378200
  • Bai S, Zhang Y, Li D, et al. Gain an advantage from both sides: smart size-shrinkable drug delivery nanosystems for high accumulation and deep penetration. Nano Today. 2021;36:101038. doi:10.1016/j.nantod.2020.101038
  • Li B, Shao H, Gao L, et al. Nano-drug co-delivery system of natural active ingredients and chemotherapy drugs for cancer treatment: a review. Drug Deliv. 2022;29(1):2130–2161. doi:10.1080/10717544.2022.2094498
  • Mu W, Chu Q, Liu Y, et al. A review on nano-based drug delivery system for cancer chemoimmunotherapy. Nano-Micro Letters. 2020;12(1):1–24. doi:10.1007/s40820-020-00482-6
  • Yang T, Choi MK, Cui FD, et al. Antitumor effect of paclitaxel-loaded PEGylated immunoliposomes against human breast cancer cells. Pharm Res. 2007;24(12):2402–2411. doi:10.1007/s11095-007-9425-y
  • Rahman M, Beg S, Verma A, et al. Liposomes as Anticancer Therapeutic Drug Carrier’s Systems: more than a Tour de Force. Curr Nanomed. 2020;10(2):178–185. doi:10.2174/2468187309666190618171332
  • Filipczak N, Pan J, Yalamarty SSK, et al. Recent advancements in liposome technology. Adv Drug Deliv Rev. 2020;156:4–22. doi:10.1016/j.addr.2020.06.022
  • Ashrafizadeh M, Ahmadi Z, Mohamadi N, et al. Chitosan-based advanced materials for docetaxel and paclitaxel delivery: recent advances and future directions in cancer theranostics. Int J Biol Macromol. 2020;145:282–300. doi:10.1016/j.ijbiomac.2019.12.145
  • Das T, Anand U, Pandey SK, et al. Therapeutic strategies to overcome taxane resistance in cancer. Drug Resistance Updates. 2021;55:100754. doi:10.1016/j.drup.2021.100754
  • Chen Q, Xu S, Liu S, et al. Emerging nanomedicines of paclitaxel for cancer treatment. J Controlled Release. 2022;342:280–294. doi:10.1016/j.jconrel.2022.01.010
  • Luo LM, Huang Y, Zhao BX, et al. Anti-tumor and anti-angiogenic effect of metronomic cyclic NGR-modified liposomes containing paclitaxel. Biomaterials. 2013;34(4):1102–1114. doi:10.1016/j.biomaterials.2012.10.029
  • Zhao S, Zhu H, Chen Z, et al. Preparation and properties of a temperature-and pH-responsive polypeptide hydrogel. Mater Res Express. 2019;6(8):085711. doi:10.1088/2053-1591/ab253e
  • Fan R, Sun W, Zhang T, et al. Paclitaxel-nanocrystals-loaded network thermosensitive hydrogel for localised postsurgical recurrent of breast cancer after surgical resection. Biomed Pharmacother. 2022;150:113017. doi:10.1016/j.biopha.2022.113017
  • Abdeltawab H, Svirskis D, Sharma M. Formulation strategies to modulate drug release from poloxamer based in situ gelling systems. Expert Opin Drug Deliv. 2020;17(4):495–509. doi:10.1080/17425247.2020.1731469
  • Couty M, Dusaud M, Miro-Padovani M, et al. Antitumor activity and mechanism of action of hormonotoxin, an LHRH analog conjugated to Dermaseptin-B2, a multifunctional antimicrobial peptide. Int J Mol Sci. 2021;22(21):11303. doi:10.3390/ijms222111303
  • Pouny Y, Rapaport D, Mor A, et al. Interaction of antimicrobial dermaseptin and its fluorescently labeled analogs with phospholipid membranes. Biochemistry. 1992;31(49):12416–12423. doi:10.1021/bi00164a017
  • Shen M, Xu YY, Sun Y, et al. Preparation of a thermosensitive gel composed of a mPEG-PLGA-PLL-cRGD nanodrug delivery system for pancreatic tumor therapy. ACS Appl Mater Interfaces. 2015;7(37):20530–20537. doi:10.1021/acsami.5b06043
  • Mohammad-Hadi L, MacRobert AJ, Loizidou M, et al. Photodynamic therapy in 3D cancer models and the utilisation of nanodelivery systems. Nanoscale. 2018;10(4):1570–1581.
  • Geng S, Zhao H, Zhan G, et al. Injectable in situ forming hydrogels of thermosensitive polypyrrole nanoplatforms for precisely synergistic photothermo-chemotherapy. ACS Appl Mater Interfaces. 2020;12(7):7995–8005. doi:10.1021/acsami.9b22654
  • Wang X, Gao J, Li C, et al. In situ gelatinase-responsive and thermosensitive nanocomplex for local therapy of gastric cancer with peritoneal metastasis. Materials Today Bio. 2022;2022:100305. doi:10.1016/j.mtbio.2022.100305
  • Chen H, Sun R, Zheng J, et al. Doxorubicin-encapsulated thermosensitive liposome-functionalized photothermal composite scaffolds for synergistic photothermal therapy and chemotherapy. J Materials Chem B. 2022;10:4771–4782. doi:10.1039/D2TB00993E