707
Views
12
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Carbon Dots-Based Nanozyme for Drug-Resistant Lung Cancer Therapy by Encapsulated Doxorubicin/siRNA Cocktail

, , , , , , , , ORCID Icon, , & show all
Pages 933-948 | Received 17 Oct 2022, Accepted 23 Jan 2023, Published online: 21 Feb 2023

References

  • Wu Q, He Z, Wang X, et al. Cascade enzymes within self-assembled hybrid nanogel mimicked neutrophil lysosomes for singlet oxygen elevated cancer therapy. Nat Commun. 2019;10:240.
  • Zhong Y, Wang T, Lao Z, et al. Au-Au/IrO2@ Cu (PABA) reactor with tandem enzyme-mimicking catalytic activity for organic dye degradation and antibacterial application. ACS Appl Mater Interfaces. 2021;13:21680–21692. doi:10.1021/acsami.1c00126
  • Henna TK, Pramod K. Graphene quantum dots redefine nanobiomedicine. Mater Sci Eng. 2020;110:110651.
  • Wareing TC, Gentile AN, Phan ANP. Biomass-based carbon dots: current development and future perspectives. ACS Nano. 2021;15:15471–15501. doi:10.1021/acsnano.1c03886
  • Molaei MJ. Carbon quantum dots and their biomedical and therapeutic applications: a review. RSC Adv. 2019;9:6460–6481. doi:10.1039/C8RA08088G
  • Lopez-Cantu DO, González-González RB, Melchor-Martínez EM, et al. Enzyme-mimicking capacities of carbon-dots nanozymes: properties, catalytic mechanism, and applications–A review. Int J Biol Macromol. 2022;194:676–687.
  • Wu Y, Wei H, van der Mei HC, de Vries J, Busscher HJ, Ren Y. Inheritance of physico-chemical properties and ROS generation by carbon quantum dots derived from pyrolytically carbonized bacterial sources. Materials Today Bio. 2021;12:100151.
  • Cohen EN, Kondiah PPD, Choonara YE, du Toit LC, Pillay V. Carbon dots as nanotherapeutics for biomedical application. Curr Pharm Des. 2020;26:2207–2221. doi:10.2174/1381612826666200402102308
  • Du J, Xu N, Fan J, Sun W, Peng X. Carbon dots for in vivo bioimaging and theranostics. Small. 2019;15:1805087.
  • Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71:7–33. doi:10.3322/caac.21654
  • Hirsch FR, Scagliotti GV, Mulshine JL, et al. Lung cancer: current therapies and new targeted treatments. Lancet. 2017;389:299–311. doi:10.1016/S0140-6736(16)30958-8
  • Bray F, Jemal A, Grey N, Ferlay J, Forman D. Global cancer transitions according to the human development index (2008–2030): a population-based study. Lancet Oncol. 2012;13:790–801. doi:10.1016/S1470-2045(12)70211-5
  • Frese KK, Simpson KL, Dive C. Small cell lung cancer enters the era of precision medicine. Cancer Cell. 2021;39:297–299. doi:10.1016/j.ccell.2021.02.002
  • Kathawala RJ, Gupta P, Ashby CR, Chen Z-S. The modulation of ABC transporter-mediated multidrug resistance in cancer: a review of the past decade. Drug Resist Updat. 2015;18:1–17. doi:10.1016/j.drup.2014.11.002
  • Bar-Zeev M, Livney YD, Assaraf YG. Targeted nanomedicine for cancer therapeutics: towards precision medicine overcoming drug resistance. Drug Resist Updat. 2017;31:15–30. doi:10.1016/j.drup.2017.05.002
  • Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 2002;53:615–627. doi:10.1146/annurev.med.53.082901.103929
  • Gencer A, Duraloglu C, Ozbay S, Ciftci TT, Yabanoglu-Ciftci S, Arica B. Recent advances in treatment of lung cancer: nanoparticle-based drug and siRNA delivery systems. Curr Drug Deliv. 2021;18:103–120. doi:10.2174/1567201817999200730211718
  • Ramos A, Sadeghi S, Tabatabaeian H. Battling chemoresistance in cancer: root causes and strategies to uproot them. Int J Mol Sci. 2021;22:9451. doi:10.3390/ijms22179451
  • Begicevic -R-R, Falasca M. ABC transporters in cancer stem cells: beyond chemoresistance. Int J Mol Sci. 2017;18:2362. doi:10.3390/ijms18112362
  • Bai H, Wang C, Qi Y, et al. Major vault protein suppresses lung cancer cell proliferation by inhibiting STAT3 signaling pathway. BMC Cancer. 2019;19. doi:10.1186/s12885-019-5665-6
  • Hanssen KM, Haber M, Fletcher JI. Targeting multidrug resistance-associated protein 1 (MRP1)-expressing cancers: beyond pharmacological inhibition. Drug Resist Updat. 2021;59:100795.
  • Huang C-Z, Zhou Y, Tong Q-S, et al. Precision medicine-guided co-delivery of ASPN siRNA and oxaliplatin by nanoparticles to overcome chemoresistance of colorectal cancer. Biomaterials. 2022;290. doi:10.1016/j.biomaterials.2022.121827
  • Zhou Y, Zhang Q, Wang M, Huang C, Yao X. Effective delivery of siRNA-loaded nanoparticles for overcoming oxaliplatin resistance in colorectal cancer. Front Oncol. 2022;12:340.
  • Chen S, Deng J, Zhang L-M. Cationic nanoparticles self-assembled from amphiphilic chitosan derivatives containing poly(amidoamine) dendrons and deoxycholic acid as a vector for co-delivery of doxorubicin and gene. Carbohydr Polym. 2021;258:117706. doi:10.1016/j.carbpol.2021.117706
  • Creixell M, Peppas NA. Co-delivery of siRNA and therapeutic agents using nanocarriers to overcome cancer resistance. Nano Today. 2012;7:367–379. doi:10.1016/j.nantod.2012.06.013
  • Tieu T, Wojnilowicz M, Huda P, et al. Nanobody-displaying porous silicon nanoparticles for the co-delivery of siRNA and doxorubicin. Bio Sci. 2021;9:133–147. doi:10.1039/D0BM01335H
  • Hailing Y, Xiufang L, Lili W, et al. Doxorubicin-loaded fluorescent carbon dots with PEI passivation as a drug delivery system for cancer therapy. Nanoscale. 2020;12:17222–17237. doi:10.1039/D0NR01236J
  • Liu C, Zhang P, Zhai X, et al. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials. 2012;33:3604–3613. doi:10.1016/j.biomaterials.2012.01.052
  • Bai J, Liu Y, Jiang X. Multifunctional PEG-GO/CuS nanocomposites for near-infrared chemo-photothermal therapy. Biomaterials. 2014;35:5805–5813. doi:10.1016/j.biomaterials.2014.04.008
  • Zhang H, Yao S, Zhao C, Zhao W, Li J, Wang J. Feasibility study on facile and one-step colorimetric determination of glutathione by exploiting oxidase-like activity of Fe3O4-MnO2 nanocomposites. Analytical Sci. 2021;37:1355–1360. doi:10.2116/analsci.20P353
  • Lv X, Yu H, Zhang Q, et al. SRXN1 stimulates hepatocellular carcinoma tumorigenesis and metastasis through modulating ROS/p65/BTG2 signalling. J Cell Mol Med. 2020;24:10714–10729. doi:10.1111/jcmm.15693
  • Sun YP, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc. 2006;128:7756–7757. doi:10.1021/ja062677d
  • Baker SN, Baker GA. Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Edit. 2010;49:6726–6744. doi:10.1002/anie.200906623
  • Hou J, Yan J, Zhao Q, Li Y, Ding H, Ding L. A novel one-pot route for large-scale preparation of highly photoluminescent carbon quantum dots powders. Nanoscale. 2013;5:9558–9561. doi:10.1039/c3nr03444e
  • Edison TNJI, Atchudan R, Sethuraman MG, Shim JJ, Lee YR. Microwave assisted green synthesis of fluorescent N-doped carbon dots: cytotoxicity and bio-imaging applications. J Photoch Photobio B. 2016;161:154–161. doi:10.1016/j.jphotobiol.2016.05.017
  • Yu P, Wen XM, Toh YR, Tang J. Temperature-dependent fluorescence in carbon dots. J Phys Chem C. 2012;116:25552–25557. doi:10.1021/jp307308z
  • Yuan Y, Guo B, Hao L, et al. Doxorubicin-loaded environmentally friendly carbon dots as a novel drug delivery system for nucleus targeted cancer therapy. Colloids Surf B Biointerfaces. 2017;159:349. doi:10.1016/j.colsurfb.2017.07.030
  • Yang L, Wang ZR, Wang J, et al. Doxorubicin conjugated functionalizable carbon dots for nucleus targeted delivery and enhanced therapeutic efficacy. Nanoscale. 2016;8:6801–6809. doi:10.1039/C6NR00247A