318
Views
3
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Inflammatory Genes Associated with Pristine Multi-Walled Carbon Nanotubes-Induced Toxicity in Ocular Cells

, , &
Pages 2465-2484 | Received 24 Oct 2022, Accepted 06 May 2023, Published online: 10 May 2023

References

  • Li J, Xin M, Ma Z, Shi Y, Pan L. Nanomaterials and their applications on bio-inspired wearable electronics. Nanotechnology. 2021;32(47):472002.
  • Luo X, Liang Y, Weng W, Hu Z, Zhu M. Polypyrrole-coated carbon nanotube/cotton hybrid fabric with high areal capacitance for flexible quasi-solid-state supercapacitors. Energy Storage Mater. 2020;33(2020):11–17.
  • Ranjha M, Shafique B, Rehman A, et al. Biocompatible nanomaterials in food science, technology, and nutrient drug delivery: recent developments and applications. Front Nutr. 2022;8:778155.
  • Bhat BB, Kamath PP, Chatterjee S, Bhattacherjee R, Nayak UY. Recent updates on nanocosmeceutical skin care and anti-aging products. Curr Pharm Des. 2022;28(15):1258–1271.
  • Zhu S, Gong L, Li Y, Xu H, Gu Z, Zhao Y. Safety assessment of nanomaterials to eyes: an important but neglected issue. Adv Sci. 2019;6(16):1802289.
  • Bae JS, Oh SB, Kim J, et al. Particulate matter exposure aggravates IL-17-induced eye and nose inflammation in an OVA/Poly (I:C) mouse model. Allergy Asthma Immunol Res. 2022;14(1):59–72.
  • Xie D, Hu J, Wu T, Cao K, Luo X. Potential Biomarkers and drugs for nanoparticle-induced cytotoxicity in the retina: based on regulation of inflammatory and apoptotic genes. Int J Environ Res Public Health. 2022;19(9):5664.
  • Yang R, Yang S, Li K, et al. Carbon nanotube polymer scaffolds as a conductive alternative for the construction of retinal sheet tissue. ACS Chem Neurosci. 2021;12(17):3167–3175.
  • Eleftheriou CG, Zimmermann JB, Kjeldsen HD, David-Pur M, Hanein Y, Sernagor E. Carbon nanotube electrodes for retinal implants: a study of structural and functional integration over time. Biomaterials. 2017;112:108–121.
  • Sharma S, Bhatia V. Nanoscale drug delivery systems for glaucoma: experimental and in silico advances. Curr Top Med Chem. 2021;21(2):115–125.
  • El-Gendy AO, Obaid Y, Ahmed E, Enwemeka CS, Hassan M, Mohamed T. The antimicrobial effect of gold quantum dots and femtosecond laser irradiation on the growth kinetics of common infectious eye pathogens: an in vitro study. Nanomaterials. 2022;12(21):3757.
  • El-Gendy AO, Nawaf KT, Ahmed E, et al. Preparation of zinc oxide nanoparticles using laser-ablation technique: retinal epithelial cell (ARPE-19) biocompatibility and antimicrobial activity when activated with femtosecond laser. J Photochem Photobiol B. 2022;234:112540.
  • Wang J, Xu Y, Yang Z, et al. Toxicity of carbon nanotubes. Curr Drug Metab. 2013;14(8):891–899.
  • Yan L, Zhang S, Zeng C, et al. Cytotoxicity of single-walled carbon nanotubes with human ocular cells. Adv Mater Res. 2011;287–290:32–36.
  • Yan L, Li GX, Zhang S, et al. Cytotoxicity and genotoxicity of multi-walled carbon nanotubes with human ocular cells. Chin Sci Bulletin. 2013;58:2347–2353.
  • Kishore AS, Surekha P, Murthy PB. Assessment of the dermal and ocular irritation potential of multi-walled carbon nanotubes by using in vitro and in vivo methods. Toxicol Lett. 2009;191(2–3):268–274.
  • Kataoka C, Nakahara K, Shimizu K, et al. Salinity-dependent toxicity of water-dispersible, single-walled carbon nanotubes to Japanese medaka embryos. J Appl Toxicol. 2017;37(4):408–416.
  • Strauss O. The retinal pigment epithelium in visual function. Physiol Rev. 2005;85(3):845–881.
  • Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.
  • Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166–169.
  • Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106.
  • Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 2008;9:559.
  • Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(Databaseissue):D447–452.
  • Tang Y, Li M, Wang J, Pan Y, Wu FX. CytoNCA: a cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Biosystems. 2015;127:67–72.
  • Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 2003;4:2.
  • Jin X, Xue B, Zhou Q, Su R, Li Z. Mitochondrial damage mediated by ROS incurs bronchial epithelial cell apoptosis upon ambient PM2.5 exposure. J Toxicol Sci. 2018;43(2):101–111.
  • Chen X, Zhu S, Hu X, et al. Toxicity and mechanism of mesoporous silica nanoparticles in eyes. Nanoscale. 2020;12(25):13637–13653.
  • Numano T, Sugiyama T, Kawabe M, et al. Lung toxicity of a vapor-grown carbon fiber in comparison with a multi-walled carbon nanotube in F344 rats. J Toxicol Pathol. 2021;34(1):57–71.
  • Lucas JH, Wang Q, Muthumalage T, Rahman I. Multi-Walled Carbon Nanotubes (MWCNTs) cause cellular senescence in TGF-β stimulated lung epithelial cells. Toxics. 2021;9(6):144.
  • Awogbindin IO, Maduako IC, Adedara IA, et al. Kolaviron ameliorates hepatic and renal dysfunction associated with multiwalled carbon nanotubes in rats. Environ Toxicol. 2021;36(1):67–76.
  • Samiei F, Shirazi FH, Naserzadeh P, Dousti F, Seydi E, Pourahmad J. Toxicity of multi-wall carbon nanotubes inhalation on the brain of rats. Environ Sci Pollut Res Int. 2020;27(11):12096–12111.
  • Adedara IA, Awogbindin IO, Maduako IC, et al. Kolaviron suppresses dysfunctional reproductive axis associated with multi-walled carbon nanotubes exposure in male rats. Environ Sci Pollut Res Int. 2021;28(1):354–364.
  • Zhao X, Chang S, Long J, Li J, Li X, Cao Y. The toxicity of multi-walled carbon nanotubes (MWCNTs) to human endothelial cells: the influence of diameters of MWCNTs. Food Chem Toxicol. 2019;126:169–177.
  • Fujita K, Obara S, Maru J, Endoh S. Cytotoxicity profiles of multi-walled carbon nanotubes with different physico-chemical properties. Toxicol Mech Methods. 2020;30(7):477–489.
  • Wang X, Jia G, Wang H, et al. Diameter effects on cytotoxicity of multi-walled carbon nanotubes. J Nanosci Nanotechnol. 2009;9(5):3025–3033.
  • Poulsen SS, Jackson P, Kling K, et al. Multi-walled carbon nanotube physicochemical properties predict pulmonary inflammation and genotoxicity. Nanotoxicology. 2016;10(9):1263–1275.
  • Gali NK, Ning Z, Daoud W, Brimblecombe P. Investigation on the mechanism of non-photocatalytically TiO2-induced reactive oxygen species and its significance on cell cycle and morphology. J Appl Toxicol. 2016;36(10):1355–1363.
  • Wils RS, Jacobsen NR, Vogel U, Roursgaard M, Møller P. Inflammatory response, reactive oxygen species production and DNA damage in mice after intrapleural exposure to carbon nanotubes. Toxicol Sci. 2021;183(1):184–194.
  • Di Ianni E, Erdem JS, Møller P, et al. In vitro-in vivo correlations of pulmonary inflammogenicity and genotoxicity of MWCNT. Part Fibre Toxicol. 2021;18(1):25.
  • de Godoy KF, de Almeida Rodolpho JM, Brassolatti P, et al. New multi-walled carbon nanotube of industrial interest induce cell death in murine fibroblast cells. Toxicol Mech Methods. 2021;31(7):517–530.
  • Hussain S, Sangtian S, Anderson SM, et al. Inflammasome activation in airway epithelial cells after multi-walled carbon nanotube exposure mediates a profibrotic response in lung fibroblasts. Part Fibre Toxicol. 2014;11:28.
  • Ursini CL, Maiello R, Ciervo A, et al. Evaluation of uptake, cytotoxicity and inflammatory effects in respiratory cells exposed to pristine and -OH and -COOH functionalized multi-wall carbon nanotubes. J Appl Toxicol. 2016;36(3):394–403.
  • Kermanizadeh A, Gaiser BK, Ward MB, Stone V. Primary human hepatocytes versus hepatic cell line: assessing their suitability for in vitro nanotoxicology. Nanotoxicology. 2013;7(7):1255–1271.
  • Reddy AR, Reddy YN, Krishna DR, Himabindu V. Multi wall carbon nanotubes induce oxidative stress and cytotoxicity in human embryonic kidney (HEK293) cells. Toxicology. 2010;272(1–3):11–16.
  • Kermanizadeh A, Vranic S, Boland S, et al. An in vitro assessment of panel of engineered nanomaterials using a human renal cell line: cytotoxicity, pro-inflammatory response, oxidative stress and genotoxicity. BMC Nephrol. 2013;14:96.
  • Park EJ, Yi J, Chung KH, Ryu DY, Choi J, Park K. Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Lett. 2008;180(3):222–229.
  • Danielsen PH, Bendtsen KM, Knudsen KB, Poulsen SS, Stoeger T, Vogel U. Nanomaterial- and shape-dependency of TLR2 and TLR4 mediated signaling following pulmonary exposure to carbonaceous nanomaterials in mice. Part Fibre Toxicol. 2021;18(1):40.
  • Jang J, Park S, Choi IH. Increased interleukin-11 and stress-related gene expression in human endothelial and bronchial epithelial cells exposed to silver nanoparticles. Biomolecules. 2021;11(2):234.
  • Armand L, Dagouassat M, Belade E, et al. Titanium dioxide nanoparticles induce matrix metalloprotease 1 in human pulmonary fibroblasts partly via an interleukin-1β-dependent mechanism. Am J Respir Cell Mol Biol. 2013;48(3):354–363.
  • Guo P, Zhang SZ, He H, Zhu YT, Tseng SC. PTX3 controls activation of matrix metalloproteinase 1 and apoptosis in conjunctivochalasis fibroblasts. Invest Ophthalmol Vis Sci. 2012;53(7):3414–3423.
  • Asare N, Duale N, Slagsvold HH, et al. Genotoxicity and gene expression modulation of silver and titanium dioxide nanoparticles in mice. Nanotoxicology. 2016;10(3):312–321.
  • Sheng L, Wang L, Su M, et al. Mechanism of TiO2 nanoparticle-induced neurotoxicity in zebrafish (Danio rerio). Environ Toxicol. 2016;31(2):163–175.
  • Sang X, Li B, Ze Y, et al. Toxicological mechanisms of nanosized titanium dioxide-induced spleen injury in mice after repeated peroral application. J Agric Food Chem. 2013;61(23):5590–5599.
  • Zhou L, Xue C, Chen Z, Jiang W, He S, Zhang X. c-Fos is a mechanosensor that regulates inflammatory responses and lung barrier dysfunction during ventilator-induced acute lung injury. BMC Pulm Med. 2022;22(1):9.
  • Sun Y, Lin Z, Liu CH, et al. Inflammatory signals from photoreceptor modulate pathological retinal angiogenesis via c-Fos. J Exp Med. 2017;214(6):1753–1767.
  • Gil N, Ulitsky I. Regulation of gene expression by cis-acting long non-coding RNAs. Nat Rev Genet. 2020;21(2):102–117.
  • Ndika J, Karisola P, Kinaret P, Ilves M, Alenius H. Profiling non-coding RNA changes associated with 16 different engineered nanomaterials in a mouse airway exposure model. Cells. 2021;10(5):1085.
  • Chang G, Xie D, Hu J, Wu T, Cao K, Luo X. Identification of candidate lncRNA and pseudogene biomarkers associated with carbon-nanotube-induced malignant transformation of lung cells and prediction of potential preventive drugs. Int J Environ Res Public Health. 2022;19(5):2936.
  • Xue D, Zou W, Liu D, et al. Cytotoxicity and transcriptome changes triggered by CuInS(2)/ZnS quantum dots in human glial cells. Neurotoxicology. 2022;88:134–143.
  • Zhao Y, Xu R, Hua X, Rui Q, Wang D. Multi-walled carbon nanotubes induce transgenerational toxicity associated with activation of germline long non-coding RNA linc-7 in. C Elegans Chemosph. 2022;301:134687.
  • Yu F, Zhang X, Gao L, et al. LncRNA loc105377478 promotes NPs-Nd2O3-induced inflammation in human bronchial epithelial cells through the ADIPOR1/NF-κB axis. Ecotoxicol Environ Saf. 2021;208:111609.
  • Yang M, Chang X, Gao Q, et al. LncRNA MEG3 ameliorates NiO nanoparticles-induced pulmonary inflammatory damage via suppressing the p38 mitogen activated protein kinases pathway. Environ Toxicol. 2022;37(5):1058–1070.
  • Wu H, Zhou J, Chen S, Zhu L, Jiang M, Liu A. Survival-related lncRNA landscape analysis identifies LINC01614 as an oncogenic lncRNA in gastric cancer. Front Genet. 2021;12:698947.
  • Jiang C, Feng D, Zhang Y, Yang K, Hu X, Xie Q. SCAT8/miR-125b-5p axis triggers malignant progression of nasopharyngeal carcinoma through SCARB1. BMC Mol Cell Biol. 2023;24(1):15.
  • Zhao S, Lin C, Yang T, Qian X, Lu J, Cheng J. Expression of long non-coding RNA LUCAT1 in patients with chronic obstructive pulmonary disease and its potential functions in regulating cigarette smoke extract-induced 16HBE cell proliferation and apoptosis. J Clin Lab Anal. 2021;35(7):e23823.
  • Wang J, Xin S, Yang R, Jiang J, Qiao Y. Knockdown of lncRNA LUCAT1 attenuates sepsis‑induced myocardial cell injury by sponging miR-642a. Mamm Genome. 2021;32(6):457–465.
  • Soltysova A, Begerova P, Jakic K, et al. Genome-wide DNA methylome and transcriptome changes induced by inorganic nanoparticles in human kidney cells after chronic exposure. Cell Biol Toxicol. 2022;2022:1–8.
  • Zhang Z, Zhao L, Ma Y, et al. Mechanistic study of silica nanoparticles on the size-dependent retinal toxicity in vitro and in vivo. J Nanobiotechnology. 2022;20(1):146.
  • Hanafy BI, Cave GWV, Barnett Y, Pierscionek B. Treatment of human lens epithelium with high levels of nanoceria leads to reactive oxygen species mediated apoptosis. Molecules. 2020;25(3):441.
  • Wang L, Chen C, Guo L, et al. Zinc oxide nanoparticles induce murine photoreceptor cell death via mitochondria-related signaling pathway. Artif Cells Nanomed Biotechnol. 2018;46(sup1):1102–1113.
  • An W, Zhang Y, Zhang X, et al. Ocular toxicity of reduced graphene oxide or graphene oxide exposure in mouse eyes. Exp Eye Res. 2018;174:59–69.
  • Sager TM, Umbright CM, Mustafa GM, et al. Pulmonary toxicity and gene expression changes in response to whole-body inhalation exposure to multi-walled carbon nanotubes in rats. Inhal Toxicol. 2022;34(7–8):200–218.
  • Fu Y, Li B, Yun J, et al. lncRNA SOX2-OT ceRNA network enhances the malignancy of long-term PM2.5-exposed human bronchial epithelia. Ecotoxicol Environ Saf. 2021;217:112242.
  • Abu Gazia M, El-Magd MA. Effect of pristine and functionalized multiwalled carbon nanotubes on rat renal cortex. Acta Histochem. 2019;121(2):207–217.
  • Sallam AA, El-Magd MA, Ahmed MM, et al. Quercetin alleviated multi-walled carbon nanotubes-induced neurotoxicity in mice through inhibition of oxidation, inflammation, and pyroptosis. Biomed Pharmacother. 2022;151:113160.
  • Pei X, Jiang H, Li C, Li D, Tang S. Oxidative stress-related canonical pyroptosis pathway, as a target of liver toxicity triggered by zinc oxide nanoparticles. J Hazard Mater. 2023;442:130039.