570
Views
9
CrossRef citations to date
0
Altmetric
REVIEW

The Current Progress of Tetrahedral DNA Nanostructure for Antibacterial Application and Bone Tissue Regeneration

ORCID Icon, , , , &
Pages 3761-3780 | Received 09 Mar 2023, Accepted 19 Jun 2023, Published online: 10 Jul 2023

References

  • Contera S, Bernardino de la Serna J, Tetley TD. Biotechnology, nanotechnology and medicine. Emerg Top Life Sci. 2020;4(6):551–554. doi:10.1042/ETLS20200350
  • Seeman NC. Nucleic acid junctions and lattices. J Theor Biol. 1982;99(2):237–247. doi:10.1016/0022-5193(82)90002-9
  • Goodman RP, Schaap IA, Tardin CF, et al. Endocytosis. Science. 2005;310(5754):1661–1665. doi:10.1126/science.1120367
  • Bhatia D, Mehtab S, Krishnan R, Indi SS, Basu A, Krishnan Y. Icosahedral DNA nanocapsules by modular assembly. Angew Chem Int Ed Engl. 2009;48(23):4134–4137. doi:10.1002/anie.200806000
  • Fujibayashi K, Hariadi R, Park SH, Winfree E, Murata S. Toward reliable algorithmic self-assembly of DNA tiles: a fixed-width cellular automaton pattern. Nano Lett. 2008;8(7):1791–1797. doi:10.1021/nl0722830
  • Andersen ES, Dong M, Nielsen MM, et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature. 2009;459(7243):73–76. doi:10.1038/nature07971
  • Chen JH, Seeman NC. Synthesis from DNA of a molecule with the connectivity of a cube. Nature. 1991;350(6319):631–633. doi:10.1038/350631a0
  • Goodman RP, Berry RM, Turberfield AJ. The single-step synthesis of a DNA tetrahedron. Chem Commun. 2004;12:1372–1373.
  • Tian Y, Wang T, Liu W, et al. Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames. Nat Nanotechnol. 2015;10(7):637–644. doi:10.1038/nnano.2015.105
  • Zhang C, Su M, He Y, et al. Conformational flexibility facilitates self-assembly of complex DNA nanostructures. Proc Natl Acad Sci U S A. 2008;105(31):10665–10669. doi:10.1073/pnas.0803841105
  • Rothemund PW, Ekani-Nkodo A, Papadakis N, Kumar A, Fygenson DK, Winfree E. Design and characterization of programmable DNA nanotubes. J Am Chem Soc. 2004;126(50):16344–16352. doi:10.1021/ja044319l
  • Rothemund PW. Folding DNA to create nanoscale shapes and patterns. Nature. 2006;440(7082):297–302. doi:10.1038/nature04586
  • Han D, Pal S, Nangreave J, Deng Z, Liu Y, Yan H. DNA origami with complex curvatures in three-dimensional space. Science. 2011;332(6027):342–346. doi:10.1126/science.1202998
  • Lin Y, Li Q, Wang L, et al. Advances in regenerative medicine applications of tetrahedral framework nucleic acid-based nanomaterials: an expert consensus recommendation. Int J Oral Sci. 2022;14(1):51. doi:10.1038/s41368-022-00199-9
  • Shih WM, Quispe JD, Joyce GF. A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature. 2004;427(6975):618–621. doi:10.1038/nature02307
  • Ding H, Li J, Chen N, et al. DNA nanostructure-programmed like-charge attraction at the cell-membrane interface. ACS Cent Sci. 2018;4(10):1344–1351. doi:10.1021/acscentsci.8b00383
  • Peng Q, Shao XR, Xie J, et al. Understanding the biomedical effects of the self-assembled tetrahedral DNA nanostructure on living cells. ACS Appl Mater Interfaces. 2016;8(20):12733–12739. doi:10.1021/acsami.6b03786
  • Liu N, Zhang X, Li N, et al. Tetrahedral framework nucleic acids promote corneal epithelial wound healing in vitro and in vivo. Small. 2019;15(31):e1901907. doi:10.1002/smll.201901907
  • Shao X, Lin S, Peng Q, et al. Tetrahedral DNA nanostructure: a potential promoter for cartilage tissue regeneration via regulating chondrocyte phenotype and proliferation. Small. 2017;13(12). doi:10.1002/smll.201602770
  • Li H, Han M, Weng X, Zhang Y, Li J. DNA-tetrahedral-nanostructure-based entropy-driven amplifier for high-performance photoelectrochemical biosensing. ACS Nano. 2021;15(1):1710–1717. doi:10.1021/acsnano.0c09374
  • Zhang T, Tian T, Zhou R, et al. Design, fabrication and applications of tetrahedral DNA nanostructure-based multifunctional complexes in drug delivery and biomedical treatment. Nat Protoc. 2020;15(8):2728–2757. doi:10.1038/s41596-020-0355-z
  • Mathur D, Rogers KE, Díaz SA, et al. Determining the cytosolic stability of small DNA nanostructures in cellula. Nano Lett. 2022;22(12):5037–5045. doi:10.1021/acs.nanolett.2c00917
  • Xiao D, Li Y, Tian T, et al. Tetrahedral framework nucleic acids loaded with aptamer AS1411 for siRNA delivery and gene silencing in malignant melanoma. ACS Appl Mater Interfaces. 2021;13(5):6109–6118. doi:10.1021/acsami.0c23005
  • Zhao D, Liu M, Li J, et al. Angiogenic aptamer-modified tetrahedral framework nucleic acid promotes angiogenesis in vitro and in vivo. ACS Appl Mater Interfaces. 2021;13(25):29439–29449. doi:10.1021/acsami.1c08565
  • Sirong S, Yang C, Taoran T, et al. Effects of tetrahedral framework nucleic acid/wogonin complexes on osteoarthritis. Bone Res. 2020;8:6. doi:10.1038/s41413-019-0077-4
  • Wiraja C, Zhu Y, Lio DCS, et al. Framework nucleic acids as programmable carrier for transdermal drug delivery. Nat Commun. 2019;10(1):1147. doi:10.1038/s41467-019-09029-9
  • Chai H, Tang Y, Miao P. Tetrahedral DNA supported walking nanomachine for ultrasensitive miRNA detection in cancer cells and serums. Anal Chem. 2022;94(28):9975–9980. doi:10.1021/acs.analchem.2c02288
  • Zhu J, Guo Z, Cui J, Miao P. Partial collapse of DNA tetrahedron for miRNA assay with duplex-specific nuclease-assisted amplification. Analyst. 2023;148(3):512–515. doi:10.1039/D2AN01889F
  • Yang F, Li Q, Wang L, Zhang G-J, Fan C. Framework-nucleic-acid-enabled biosensor development. ACS Sens. 2018;3(5):903–919. doi:10.1021/acssensors.8b00257
  • Alexandrov K, Vickers CE. In vivo protein-based biosensors: seeing metabolism in real time. Trends Biotechnol. 2023;41(1):19–26. doi:10.1016/j.tibtech.2022.07.002
  • Chai H, Wang M, Tang L, Miao P. Ultrasensitive electrochemical detection of miRNA coupling tetrahedral DNA modified gold nanoparticles tags and catalyzed hairpin assembly. Anal Chim Acta. 2021;1165:338543. doi:10.1016/j.aca.2021.338543
  • Ma W, Zhan Y, Zhang Y, et al. An intelligent DNA nanorobot with in vitro enhanced protein lysosomal degradation of HER2. Nano Lett. 2019;19(7):4505–4517. doi:10.1021/acs.nanolett.9b01320
  • Zhou M, Liu N, Zhang Q, et al. Effect of tetrahedral DNA nanostructures on proliferation and osteogenic differentiation of human periodontal ligament stem cells. Cell Prolif. 2019;52(3):e12566. doi:10.1111/cpr.12566
  • Ma W, Zhan Y, Zhang Y, Xie X, Mao C, Lin Y. Enhanced neural regeneration with a concomitant treatment of framework nucleic acid and stem cells in spinal cord injury. ACS Appl Mater Interfaces. 2020;12(2):2095–2106. doi:10.1021/acsami.9b19079
  • Li S, Liu Y, Tian T, et al. Bioswitchable delivery of microRNA by framework nucleic acids: application to bone regeneration. Small. 2021;17(47):e2104359. doi:10.1002/smll.202104359
  • Afewerki S, Bassous N, Harb S, et al. Advances in dual functional antimicrobial and osteoinductive biomaterials for orthopaedic applications. Nanomedicine. 2020;24:102143. doi:10.1016/j.nano.2019.102143
  • Baker CE, Moore-Lotridge SN, Hysong AA, et al. Bone fracture acute phase response-a unifying theory of fracture repair: clinical and scientific implications. Clin Rev Bone Miner Metab. 2018;16(4):142–158. doi:10.1007/s12018-018-9256-x
  • Lu H, Liu Y, Guo J, Wu H, Wang J, Wu G. Biomaterials with antibacterial and osteoinductive properties to repair infected bone defects. Int J Mol Sci. 2016;17(3):334. doi:10.3390/ijms17030334
  • Depypere M, Morgenstern M, Kuehl R, et al. Pathogenesis and management of fracture-related infection. Clin Microbiol Infect. 2020;26(5):572–578. doi:10.1016/j.cmi.2019.08.006
  • Xia J, Gao J, Tang W. Nosocomial infection and its molecular mechanisms of antibiotic resistance. Biosci Trends. 2016;10(1):14–21. doi:10.5582/bst.2016.01020
  • Schilcher K, Horswill AR. Staphylococcal biofilm development: structure, regulation, and treatment strategies. Microbiol Mol Biol Rev. 2020;84(3). doi:10.1128/MMBR.00026-19
  • Arciola CR, Campoccia D, Ehrlich GD, Montanaro L. Biofilm-based implant infections in orthopaedics. Adv Exp Med Biol. 2015;830:29–46.
  • Goodman RP, Schaap IA, Tardin CF, et al. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science. 2005;310(5754):1661–1665.
  • Zhang T, Tian T, Lin Y. Functionalizing framework nucleic-acid-based nanostructures for biomedical application. Adv Mater. 2021;2021;e2107820.
  • Shi S, Lin S, Shao X, Li Q, Tao Z, Lin Y. Modulation of chondrocyte motility by tetrahedral DNA nanostructures. Cell Prolif. 2017;50(5):e12368. doi:10.1111/cpr.12368
  • Zhou M, Zhang T, Zhang B, et al. A DNA nanostructure-based neuroprotectant against neuronal apoptosis via inhibiting toll-like receptor 2 signaling pathway in acute ischemic stroke. ACS Nano. 2021;16(1):1456–1470.
  • Lin S, Zhang Q, Zhang T, et al. Tetrahedral DNA nanomaterial regulates the biological behaviors of adipose-derived stem cells via DNA methylation on Dlg3. ACS Appl Mater Interfaces. 2018;10(38):32017–32025. doi:10.1021/acsami.8b12408
  • Ma W, Shao X, Zhao D, et al. Self-assembled tetrahedral DNA nanostructures promote neural stem cell proliferation and neuronal differentiation. ACS Appl Mater Interfaces. 2018;10(9):7892–7900. doi:10.1021/acsami.8b00833
  • Ma W, Xie X, Shao X, et al. Tetrahedral DNA nanostructures facilitate neural stem cell migration via activating RHOA/ROCK2 signalling pathway. Cell Prolif. 2018;51(6):e12503. doi:10.1111/cpr.12503
  • Yao Y, Wen Y, Li Y, et al. Tetrahedral framework nucleic acids facilitate neurorestoration of facial nerves by activating the NGF/PI3K/AKT pathway. Nanoscale. 2021;13(37):15598–15610. doi:10.1039/D1NR04619E
  • Gao S, Wang Y, Li Y, et al. Tetrahedral framework nucleic acids reestablish immune tolerance and restore saliva secretion in a Sjögren’s syndrome mouse model. ACS Appl Mater Interfaces. 2021;13(36):42543–42553. doi:10.1021/acsami.1c14861
  • Renehan AG, Booth C, Potten CS. What is apoptosis, and why is it important? BMJ. 2001;322(7301):1536–1538. doi:10.1136/bmj.322.7301.1536
  • Qin X, Li N, Zhang M, et al. Tetrahedral framework nucleic acids prevent retina ischemia-reperfusion injury from oxidative stress via activating the Akt/Nrf2 pathway. Nanoscale. 2019;11(43):20667–20675. doi:10.1039/C9NR07171G
  • Walsh AS, Yin H, Erben CM, Wood MJ, Turberfield AJ. DNA cage delivery to mammalian cells. ACS Nano. 2011;5(7):5427–5432. doi:10.1021/nn2005574
  • Kim KR, Kim DR, Lee T, et al. Drug delivery by a self-assembled DNA tetrahedron for overcoming drug resistance in breast cancer cells. Chem Commun. 2013;49(20):2010–2012. doi:10.1039/c3cc38693g
  • Liang L, Li J, Li Q, et al. Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells. Angew Chem Int Ed Engl. 2014;53(30):7745–7750. doi:10.1002/anie.201403236
  • Zhang Q, Jiang Q, Li N, et al. DNA origami as an in vivo drug delivery vehicle for cancer therapy. ACS Nano. 2014;8(7):6633–6643. doi:10.1021/nn502058j
  • Wei M, Li S, Yang Z, Cheng C, Li T, Le W. Tetrahedral DNA nanostructures functionalized by multivalent microRNA132 antisense oligonucleotides promote the differentiation of mouse embryonic stem cells into dopaminergic neurons. Nanomedicine. 2021;34:102375. doi:10.1016/j.nano.2021.102375
  • Zhang M, Zhang X, Tian T, et al. Anti-inflammatory activity of curcumin-loaded tetrahedral framework nucleic acids on acute gouty arthritis. Bioact Mater. 2022;8:368–380. doi:10.1016/j.bioactmat.2021.06.003
  • Tian TR, Xiao DX, Zhang T, et al. A framework nucleic acid based robotic nanobee for active targeting therapy. Adv Funct Mater. 2021;31(5):2007342. doi:10.1002/adfm.202007342
  • Li J, Pei H, Zhu B, et al. Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano. 2011;5(11):8783–8789. doi:10.1021/nn202774x
  • He P, Han W, Bi C, et al. Many birds, one stone: a smart nanodevice for ratiometric dual-spectrum assay of intracellular MicroRNA and multimodal synergetic cancer therapy. ACS Nano. 2021;15(4):6961–6976. doi:10.1021/acsnano.0c10844
  • Lee H, Lytton-Jean AK, Chen Y, et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat Nanotechnol. 2012;7(6):389–393. doi:10.1038/nnano.2012.73
  • Qin X, Xiao L, Li N, et al. Tetrahedral framework nucleic acids-based delivery of microRNA-155 inhibits choroidal neovascularization by regulating the polarization of macrophages. Bioact Mater. 2022;14:134–144. doi:10.1016/j.bioactmat.2021.11.031
  • Leigh DA. Antibacterial activity and pharmacokinetics of clindamycin. J Antimicrob Chemother. 1981;7(Suppl A):3–9. doi:10.1093/jac/7.suppl_A.3
  • Li Y, Gao S, Shi S, et al. Tetrahedral framework nucleic acid-based delivery of resveratrol alleviates insulin resistance: from innate to adaptive immunity. Nanomicro Lett. 2021;13(1):86. doi:10.3847/1538-4357/ac06c8
  • Huang Y, Huang W, Chan L, Zhou B, Chen T. A multifunctional DNA origami as carrier of metal complexes to achieve enhanced tumoral delivery and nullified systemic toxicity. Biomaterials. 2016;103:183–196. doi:10.1016/j.biomaterials.2016.06.053
  • Ozhalici-Unal H, Armitage BA. Fluorescent DNA nanotags based on a self-assembled DNA tetrahedron. ACS Nano. 2009;3(2):425–433. doi:10.1021/nn800727x
  • Erben CM, Goodman RP, Turberfield AJ. Single-molecule protein encapsulation in a rigid DNA cage. Angew Chem Int Ed Engl. 2006;45(44):7414–7417. doi:10.1002/anie.200603392
  • Agudelo D, Bourassa P, Bérubé G, Tajmir-Riahi HA. Review on the binding of anticancer drug doxorubicin with DNA and tRNA: structural models and antitumor activity. J Photochem Photobiol B. 2016;158:274–279. doi:10.1016/j.jphotobiol.2016.02.032
  • Ijäs H, Shen B, Heuer-Jungemann A, et al. Unraveling the interaction between doxorubicin and DNA origami nanostructures for customizable chemotherapeutic drug release. Nucleic Acids Res. 2021;49(6):3048–3062. doi:10.1093/nar/gkab097
  • Setyawati MI, Kutty RV, Tay CY, Yuan X, Xie J, Leong DT. Novel theranostic DNA nanoscaffolds for the simultaneous detection and killing of Escherichia coli and Staphylococcus aureus. ACS Appl Mater Interfaces. 2014;6(24):21822–21831. doi:10.1021/am502591c
  • Zhang Y, Ma W, Zhu Y, et al. Inhibiting methicillin-resistant Staphylococcus aureus by tetrahedral DNA nanostructure-enabled antisense peptide nucleic acid delivery. Nano Lett. 2018;18(9):5652–5659. doi:10.1021/acs.nanolett.8b02166
  • Liu Y, Sun Y, Li S, et al. Tetrahedral framework nucleic acids deliver antimicrobial peptides with improved effects and less susceptibility to bacterial degradation. Nano Lett. 2020;20(5):3602–3610. doi:10.1021/acs.nanolett.0c00529
  • Sun Y, Liu Y, Zhang B, et al. Erythromycin loaded by tetrahedral framework nucleic acids are more antimicrobial sensitive against Escherichia coli (E. coli). Bioact Mater. 2021;6(8):2281–2290. doi:10.1016/j.bioactmat.2020.12.027
  • Sun Y, Li S, Zhang Y, et al. Tetrahedral framework nucleic acids loading ampicillin improve the drug susceptibility against methicillin-resistant Staphylococcus aureus. ACS Appl Mater Interfaces. 2020;12(33):36957–36966. doi:10.1021/acsami.0c11249
  • Zhang Y, Xie X, Ma W, et al. Multi-targeted antisense oligonucleotide delivery by a framework nucleic acid for inhibiting biofilm formation and virulence. Nanomicro Lett. 2020;12(1):74. doi:10.1007/s40820-020-0409-3
  • Bispo PJM, Sahm DF, Asbell PA. A systematic review of multi-decade antibiotic resistance data for ocular bacterial pathogens in the United States. Ophthalmol Ther. 2022;11(2):503–520. doi:10.1007/s40123-021-00449-9
  • Kalan L, Wright GD. Antibiotic adjuvants: multicomponent anti-infective strategies. Expert Rev Mol Med. 2011;13:e5. doi:10.1017/S1462399410001766
  • Skov R, Varga A, Matuschek E, et al. EUCAST disc diffusion criteria for the detection of mecA-mediated β-lactam resistance in Staphylococcus pseudintermedius: oxacillin versus cefoxitin. Clin Microbiol Infect. 2020;26(1):122.e121–122.e126. doi:10.1016/j.cmi.2019.05.002
  • Sauvage E, Kerff F, Terrak M, Ayala JA, Charlier P. The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev. 2008;32(2):234–258. doi:10.1111/j.1574-6976.2008.00105.x
  • Hawkey PM, Warren RE, Livermore DM, et al. Treatment of infections caused by multidrug-resistant gram-negative bacteria: report of the British society for antimicrobial chemotherapy/healthcare infection society/British infection association joint working party. J Antimicrob Chemother. 2018;73(suppl_3):iii2–iii78. doi:10.1093/jac/dky027
  • Roth N, Käsbohrer A, Mayrhofer S, Zitz U, Hofacre C, Domig KJ. The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: a global overview. Poult Sci. 2019;98(4):1791–1804. doi:10.3382/ps/pey539
  • Baron SA, Rolain JM. Efflux pump inhibitor CCCP to rescue colistin susceptibility in mcr-1 plasmid-mediated colistin-resistant strains and gram-negative bacteria. J Antimicrob Chemother. 2018;73(7):1862–1871. doi:10.1093/jac/dky134
  • Hyrup B, Nielsen PE. Peptide nucleic acids (PNA): synthesis, properties and potential applications. Bioorg Med Chem. 1996;4(1):5–23. doi:10.1016/0968-0896(95)00171-9
  • Demidov VV, Potaman VN, Frank-Kamenetskii MD, et al. Stability of peptide nucleic acids in human serum and cellular extracts. Biochem Pharmacol. 1994;48(6):1310–1313. doi:10.1016/0006-2952(94)90171-6
  • Nielsen PE. PNA technology. Mol Biotechnol. 2004;26(3):233–248. doi:10.1385/MB:26:3:233
  • Demidov VV, Frank-Kamenetskii MD. Two sides of the coin: affinity and specificity of nucleic acid interactions. Trends Biochem Sci. 2004;29(2):62–71. doi:10.1016/j.tibs.2003.12.007
  • Narenji H, Gholizadeh P, Aghazadeh M, Rezaee MA, Asgharzadeh M, Kafil HS. Peptide nucleic acids (PNAs): currently potential bactericidal agents. Biomed Pharmacother. 2017;93:580–588. doi:10.1016/j.biopha.2017.06.092
  • Równicki M, Wojciechowska M, Wierzba AJ, et al. Vitamin B(12) as a carrier of peptide nucleic acid (PNA) into bacterial cells. Sci Rep. 2017;7(1):7644. doi:10.1038/s41598-017-08032-8
  • Quijano E, Bahal R, Ricciardi A, Saltzman WM, Glazer PM. Therapeutic peptide nucleic acids: principles, limitations, and opportunities. Yale J Biol Med. 2017;90(4):583–598.
  • Readman JB, Dickson G, Coldham NG. Tetrahedral DNA nanoparticle vector for intracellular delivery of targeted peptide nucleic acid antisense agents to restore antibiotic sensitivity in cefotaxime-resistant Escherichia coli. Nucleic Acid Ther. 2017;27(3):176–181. doi:10.1089/nat.2016.0644
  • Readman JB, Dickson G, Coldham NG. Translational inhibition of CTX-M extended spectrum β-lactamase in clinical strains of Escherichia coli by synthetic antisense oligonucleotides partially restores sensitivity to cefotaxime. Front Microbiol. 2016;7:373. doi:10.3389/fmicb.2016.00373
  • Haydon DJ, Stokes NR, Ure R, et al. An inhibitor of FtsZ with potent and selective anti-staphylococcal activity. Science. 2008;321(5896):1673–1675. doi:10.1126/science.1159961
  • Zhang T, Cui W, Tian T, Shi S, Lin Y. Progress in biomedical applications of tetrahedral framework nucleic acid-based functional systems. ACS Appl Mater Interfaces. 2020;12(42):47115–47126. doi:10.1021/acsami.0c13806
  • Chen X, Han J, Cai X, Wang S. Antimicrobial peptides: sustainable application informed by evolutionary constraints. Biotechnol Adv. 2022;60:108012. doi:10.1016/j.biotechadv.2022.108012
  • Gong T, Fu J, Shi L, Chen X, Zong X. Antimicrobial peptides in gut health: a review. Front Nutr. 2021;8:751010. doi:10.3389/fnut.2021.751010
  • Almaaytah A, Mohammed GK, Abualhaijaa A, Al-Balas Q. Development of novel ultrashort antimicrobial peptide nanoparticles with potent antimicrobial and antibiofilm activities against multidrug-resistant bacteria. Drug Des Devel Ther. 2017;11:3159–3170. doi:10.2147/DDDT.S147450
  • Zhang B, Qin X, Zhou M, et al. Tetrahedral DNA nanostructure improves transport efficiency and anti-fungal effect of histatin 5 against Candida albicans. Cell Prolif. 2021;54(5):e13020. doi:10.1111/cpr.13020
  • Luo Y, Song Y. Mechanism of antimicrobial peptides: antimicrobial, anti-inflammatory and antibiofilm activities. Int J Mol Sci. 2021;22(21):11401. doi:10.3390/ijms222111401
  • Cheng Q, Zeng K, Kang Q, et al. The antimicrobial peptide LL-37 promotes migration and odonto/osteogenic differentiation of stem cells from the apical papilla through the Akt/Wnt/β-catenin signaling pathway. J Endod. 2020;46(7):964–972. doi:10.1016/j.joen.2020.03.013
  • Bennett CF. Therapeutic antisense oligonucleotides are coming of age. Annu Rev Med. 2019;70(1):307–321. doi:10.1146/annurev-med-041217-010829
  • Chi X, Gatti P, Papoian T. Safety of antisense oligonucleotide and siRNA-based therapeutics. Drug Discov Today. 2017;22(5):823–833. doi:10.1016/j.drudis.2017.01.013
  • Turnbull G, Clarke J, Picard F, et al. 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater. 2018;3(3):278–314. doi:10.1016/j.bioactmat.2017.10.001
  • Roddy E, DeBaun MR, Daoud-Gray A, Yang YP, Gardner MJ. Treatment of critical-sized bone defects: clinical and tissue engineering perspectives. Eur J Orthop Surg Traumatol. 2018;28(3):351–362. doi:10.1007/s00590-017-2063-0
  • García-Gareta E, Coathup MJ, Blunn GW. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone. 2015;81:112–121. doi:10.1016/j.bone.2015.07.007
  • Shao XR, Lin SY, Peng Q, et al. Effect of tetrahedral DNA nanostructures on osteogenic differentiation of mesenchymal stem cells via activation of the Wnt/β-catenin signaling pathway. Nanomedicine. 2017;13(5):1809–1819. doi:10.1016/j.nano.2017.02.011
  • Shi SR, Tian TR, Li YJ, et al. Tetrahedral framework nucleic acid inhibits chondrocyte apoptosis and oxidative stress through activation of autophagy. ACS Appl Mater Interfaces. 2020;12(51):56782–56791. doi:10.1021/acsami.0c17307
  • Shi S, Peng Q, Shao X, et al. Self-assembled tetrahedral DNA nanostructures promote adipose-derived stem cell migration via lncRNA XLOC 010623 and RHOA/ROCK2 signal pathway. ACS Appl Mater Interfaces. 2016;8(30):19353–19363. doi:10.1021/acsami.6b06528
  • Zhou M, Liu NX, Shi SR, et al. Effect of tetrahedral DNA nanostructures on proliferation and osteo/odontogenic differentiation of dental pulp stem cells via activation of the notch signaling pathway. Nanomedicine. 2018;14(4):1227–1236. doi:10.1016/j.nano.2018.02.004
  • Seo BM, Miura M, Gronthos S, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004;364(9429):149–155. doi:10.1016/S0140-6736(04)16627-0
  • Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nat Rev Dis Primers. 2017;3:17038. doi:10.1038/nrdp.2017.38
  • Zhang Q, Lin S, Shi S, et al. Anti-inflammatory and antioxidative effects of tetrahedral DNA nanostructures via the modulation of macrophage responses. ACS Appl Mater Interfaces. 2018;10(4):3421–3430. doi:10.1021/acsami.7b17928
  • Zhou M, Gao S, Zhang X, et al. The protective effect of tetrahedral framework nucleic acids on periodontium under inflammatory conditions. Bioact Mater. 2021;6(6):1676–1688. doi:10.1016/j.bioactmat.2020.11.018
  • Zhuang Y, Cui W. Biomaterial-based delivery of nucleic acids for tissue regeneration. Adv Drug Deliv Rev. 2021;176:113885. doi:10.1016/j.addr.2021.113885
  • García-Sánchez D, González-González A, García-García P, et al. Effective osteogenic priming of mesenchymal stem cells through LNA-ASOs-mediated Sfrp1 gene silencing. Pharmaceutics. 2021;13(8):1277. doi:10.3390/pharmaceutics13081277
  • Son J, Kim J, Lee K, et al. DNA aptamer immobilized hydroxyapatite for enhancing angiogenesis and bone regeneration. Acta Biomater. 2019;99:469–478. doi:10.1016/j.actbio.2019.08.047
  • Jiang W, Zhu P, Huang F, et al. The RNA methyltransferase METTL3 promotes endothelial progenitor cell angiogenesis in mandibular distraction osteogenesis via the PI3K/AKT pathway. Front Cell Dev Biol. 2021;9:720925. doi:10.3389/fcell.2021.720925
  • Zhou X, Cao H, Yuan Y, Wu W. Biochemical signals mediate the crosstalk between cartilage and bone in osteoarthritis. Biomed Res Int. 2020;2020:5720360. doi:10.1155/2020/5720360
  • Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16(3):203–222. doi:10.1038/nrd.2016.246
  • Li D, Yang Z, Luo Y, Zhao X, Tian M, Kang P. Delivery of MiR335-5p-pendant tetrahedron DNA nanostructures using an injectable heparin lithium hydrogel for challenging bone defects in steroid-associated osteonecrosis. Adv Healthc Mater. 2022;11(1):e2101412. doi:10.1002/adhm.202101412
  • Yang Z, Yi P, Liu Z, et al. Stem cell-laden hydrogel-based 3D bioprinting for bone and cartilage tissue engineering. Front Bioeng Biotechnol. 2022;10:865770. doi:10.3389/fbioe.2022.865770
  • Li J, Lai Y, Li M, et al. Repair of infected bone defect with clindamycin-tetrahedral DNA nanostructure complex-loaded 3D bioprinted hybrid scaffold. Chem Eng J. 2022;435:134855. doi:10.1016/j.cej.2022.134855
  • Veronesi F, Giavaresi G, Tschon M, Borsari V, Nicoli Aldini N, Fini M. Clinical use of bone marrow, bone marrow concentrate, and expanded bone marrow mesenchymal stem cells in cartilage disease. Stem Cells Dev. 2013;22(2):181–192. doi:10.1089/scd.2012.0373
  • Qi C, Liu J, Jin Y, et al. Photo-crosslinkable, injectable sericin hydrogel as 3D biomimetic extracellular matrix for minimally invasive repairing cartilage. Biomaterials. 2018;163:89–104. doi:10.1016/j.biomaterials.2018.02.016
  • Cui P, Pan P, Qin L, et al. Nanoengineered hydrogels as 3D biomimetic extracellular matrix with injectable and sustained delivery capability for cartilage regeneration. Bioact Mater. 2023;19:487–498. doi:10.1016/j.bioactmat.2022.03.032
  • Niemeyer P, Albrecht D, Andereya S, et al. Autologous chondrocyte implantation (ACI) for cartilage defects of the knee: a guideline by the working group “clinical tissue regeneration” of the German Society of Orthopaedics and Trauma (DGOU). Knee. 2016;23(3):426–435. doi:10.1016/j.knee.2016.02.001
  • Ponticiello MS, Schinagl RM, Kadiyala S, Barry FP. Gelatin-based resorbable sponge as a carrier matrix for human mesenchymal stem cells in cartilage regeneration therapy. J Biomed Mater Res. 2000;52(2):246–255. doi:10.1002/1097-4636(200011)52:2<246::AID-JBM2>3.0.CO;2-W
  • Giannoni P, Pagano A, Maggi E, et al. Autologous chondrocyte implantation (ACI) for aged patients: development of the proper cell expansion conditions for possible therapeutic applications. Osteoarthritis Cartilage. 2005;13(7):589–600. doi:10.1016/j.joca.2005.02.015
  • Yin L, Wu Y, Yang Z, et al. Characterization and application of size-sorted zonal chondrocytes for articular cartilage regeneration. Biomaterials. 2018;165:66–78. doi:10.1016/j.biomaterials.2018.02.050
  • Bijlsma JW, Berenbaum F, Lafeber FP. Osteoarthritis: an update with relevance for clinical practice. Lancet. 2011;377(9783):2115–2126. doi:10.1016/S0140-6736(11)60243-2
  • Glyn-Jones S, Palmer AJ, Agricola R, et al. Osteoarthritis. Lancet. 2015;386(9991):376–387. doi:10.1016/S0140-6736(14)60802-3
  • Kim JH, Jeon J, Shin M, et al. Regulation of the catabolic cascade in osteoarthritis by the zinc-ZIP8-MTF1 axis. Cell. 2014;156(4):730–743. doi:10.1016/j.cell.2014.01.007
  • Lin SY, Zhang Q, Li SH, et al. Antioxidative and angiogenesis-promoting effects of tetrahedral framework nucleic acids in diabetic wound healing with activation of the Akt/Nrf2/HO-1 pathway. ACS Appl Mater Interfaces. 2020;12(10):11397–11408. doi:10.1021/acsami.0c00874
  • Li P, Fu L, Liao Z, et al. Chitosan hydrogel/3D-printed poly(ε-caprolactone) hybrid scaffold containing synovial mesenchymal stem cells for cartilage regeneration based on tetrahedral framework nucleic acid recruitment. Biomaterials. 2021;278:121131. doi:10.1016/j.biomaterials.2021.121131
  • De bari C, Dell’Accio F, Tylzanowski P, Luyten FP. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 2001;44(8):1928–1942. doi:10.1002/1529-0131(200108)44:8<1928::AID-ART331>3.0.CO;2-P
  • Jones BA, Pei M. Synovium-derived stem cells: a tissue-specific stem cell for cartilage engineering and regeneration. Tissue Eng Part B Rev. 2012;18(4):301–311. doi:10.1089/ten.teb.2012.0002