513
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Chemical Synthesis of Innovative Silver Nanohybrids with Synergistically Improved Antimicrobial Properties

, , , , & ORCID Icon
Pages 2295-2305 | Received 18 Jan 2023, Accepted 12 Apr 2023, Published online: 03 May 2023

References

  • Li B, Webster TJ. Bacteria antibiotic resistance: new challenges and opportunities for implant-associated orthopedic infections. J Orthop Res. 2018;36(1):22–32. doi:10.1002/jor.23656
  • Friedman ND, Temkin E, Carmeli Y. The negative impact of antibiotic resistance. Clin Microbiol Infect. 2016;22(5):416–422. doi:10.1016/j.cmi.2015.12.002
  • Teillant A, Gandra S, Barter D, Morgan DJ, Laxminarayan R. Potential burden of antibiotic resistance on surgery and cancer chemotherapy antibiotic prophylaxis in the USA: a literature review and modelling study. Lancet Infect Dis. 2015;15(12):1429–1437. doi:10.1016/S1473-3099(15)00270-4
  • Mainous AG 3rd, Diaz VA, Matheson EM, Gregorie SH, Hueston WJ. Trends in hospitalizations with antibiotic-resistant infections: US, 1997–2006. Public Health Rep. 2011;126(3):354–360. doi:10.1177/003335491112600309
  • Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States; 2019. Available from: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf/. Accessed January 16, 2023.
  • Boucher HW, Talbot GH, Benjamin DK Jr, et al. 10 x ‘20 progress--development of new drugs active against gram-negative bacilli: an update from the infectious diseases society of America. Clin Infect Dis. 2013;56(12):1685–1694. doi:10.1093/cid/cit152
  • Mirsattari SM, Hammond RR, Sharpe MD, Leung FY, Young GB. Myoclonic status epilepticus following repeated oral ingestion of colloidal silver. Neurology. 2004;62(8):1408–1410. doi:10.1212/01.WNL.0000120671.73335.EC
  • Alt V, Bechert T, Steinrucke P, et al. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials. 2004;25(18):4383–4391. doi:10.1016/j.biomaterials.2003.10.078
  • Honda M, Kawanobe Y, Ishii K, et al. In vitro and in vivo antimicrobial properties of silver-containing hydroxyapatite prepared via ultrasonic spray pyrolysis route. Mater Sci Eng C Mater Biol Appl. 2013;33(8):5008–5018. doi:10.1016/j.msec.2013.08.026
  • Morones-Ramirez JR, Winkler JA, Spina CS, Collins JJ. Silver enhances antibiotic activity against gram-negative bacteria. Sci Transl Med. 2013;5(190):190ra81. doi:10.1126/scitranslmed.3006276
  • Elashnikov R, Lyutakov O, Kalachyova Y, Solovyev A, Svorcik V. Tunable release of silver nanoparticles from temperature-responsive polymer blends. React Funct Polym. 2015;93:163–169. doi:10.1016/j.reactfunctpolym.2015.06.010
  • Ahmed B, Hashmi A, Khan MS, Musarrat J. ROS mediated destruction of cell membrane, growth and biofilms of human bacterial pathogens by stable metallic AgNPs functionalized from bell pepper extract and quercetin. Adv Powder Technol. 2018;29(7):1601–1616. doi:10.1016/j.apt.2018.03.025
  • Elashnikov R, Radocha M, Panov I, et al. Porphyrin-silver nanoparticles hybrids: synthesis, characterization and antibacterial activity. Mater Sci Eng C. 2019;102:192–199. doi:10.1016/j.msec.2019.04.029
  • Rani P, Ahmed B, Singh J, et al. Silver nanostructures prepared via novel green approach as an effective platform for biological and environmental applications. Saudi J Biol Sci. 2022;29(6):103296. doi:10.1016/j.sjbs.2022.103296
  • Chauhan V, Dhiman VK, Mahajan G, Pandey A, Kanwar SS. Synthesis and characterization of silver nanoparticles developed using a novel lipopeptide (s) biosurfactant and evaluating its antimicrobial and cytotoxic efficacy. Proc Biochem. 2023;124:51–62. doi:10.1016/j.procbio.2022.11.002
  • Kannan K, Govindaraj M, Rajeswari B, Vijayakumar K. Green synthesis silver nanoparticles using medicinal plant and antimicrobial activity against human pathogens. Mater Today Proc. 2022;69:1346–1350. doi:10.1016/j.matpr.2022.08.506
  • Kang J, Dietz MJ, Hughes K, Xing M, Li B. Silver nanoparticles present high intracellular and extracellular killing against Staphylococcus aureus. J Antimicrob Chemother. 2019;74(6):1578–1585. doi:10.1093/jac/dkz053
  • Kang J, Dietz MJ, Li B. Antimicrobial peptide LL-37 is bactericidal against Staphylococcus aureus biofilms. PLoS One. 2019;14(6):e0216676. doi:10.1371/journal.pone.0216676
  • Silver S, Phung LT, Silver G. Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J Ind Microbiol Biotechnol. 2006;33(7):627–634. doi:10.1007/s10295-006-0139-7
  • Silver S. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev. 2003;27(2–3):341–353. doi:10.1016/S0168-6445(03)00047-0
  • Bragg P, Rainnie D. The effect of silver ions on the respiratory chain of Escherichia coli. Can J Microbiol. 1974;20(6):883–889. doi:10.1139/m74-135
  • Randall CP, Oyama LB, Bostock JM, Chopra I, O’Neill AJ. The silver cation (Ag+): antistaphylococcal activity, mode of action and resistance studies. J Antimicrob Chemother. 2013;68(1):131–138. doi:10.1093/jac/dks372
  • Russell A, Hugo W. 7 antimicrobial activity and action of silver. Progr Med Chem. 1994;31:351–370.
  • Oluwalowo A, Nguyen N, Zhang S, Park JG, Liang R. Electrical and thermal conductivity improvement of carbon nanotube and silver composites. Carbon. 2019;146:224–231. doi:10.1016/j.carbon.2019.01.073
  • Zhao S, Li J, Cao D, et al. Percolation threshold-inspired design of hierarchical multiscale hybrid architectures based on carbon nanotubes and silver nanoparticles for stretchable and printable electronics. J Mater Chem C. 2016;4(27):6666–6674. doi:10.1039/C6TC01728B
  • Takei K, Yu Z, Zheng M, Ota H, Takahashi T, Javey A. Highly sensitive electronic whiskers based on patterned carbon nanotube and silver nanoparticle composite films. Proc Natl Acad Sci. 2014;111(5):1703–1707. doi:10.1073/pnas.1317920111
  • Ahmadpoor F, Zebarjad SM, Janghorban K. Decoration of multi-walled carbon nanotubes with silver nanoparticles and investigation on its colloid stability. Mater Chem Phys. 2013;139(1):113–117. doi:10.1016/j.matchemphys.2012.12.071
  • Prodana M, Ionita D, Ungureanu C, Bojin D, Demetrescu I. Enhancing antibacterial effect of multiwalled carbon nanotubes using silver nanoparticles. Microscopy. 2011;6(2):549–556.
  • Fortunati E, D’angelo F, Martino S, Orlacchio A, Kenny J, Armentano I. Carbon nanotubes and silver nanoparticles for multifunctional conductive biopolymer composites. Carbon. 2011;49(7):2370–2379. doi:10.1016/j.carbon.2011.02.004
  • Chun K-Y, Oh Y, Rho J, et al. Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat Nanotechnol. 2010;5(12):853–857. doi:10.1038/nnano.2010.232
  • Feng Y, Yuan H. Electroless plating of carbon nanotubes with silver. J Mater Sci. 2004;39(9):3241–3243. doi:10.1023/B:JMSC.0000025869.05546.94
  • Yan J, Liu X, Qi H, et al. High-performance lithium–sulfur batteries with a cost-effective carbon paper electrode and high sulfur-loading. Chem Mater. 2015;27(18):6394–6401. doi:10.1021/acs.chemmater.5b02533
  • Yan J, Liu X, Yao M, Wang X, Wafle TK, Li B. Long-life, high-efficiency lithium–sulfur battery from a nanoassembled cathode. Chem Mater. 2015;27(14):5080–5087. doi:10.1021/acs.chemmater.5b01780
  • Noore J, Noore A, Li B. Cationic antimicrobial peptide LL-37 is effective against both extra-and intracellular Staphylococcus aureus. Antimicrob Agent Chemother. 2013;57(3):1283–1290. doi:10.1128/AAC.01650-12
  • Armstead AL, Simoes TA, Wang X, et al. Toxicity and oxidative stress responses induced by nano-and micro-CoCrMo particles. J Mater Chem B. 2017;5(28):5648–5657. doi:10.1039/C7TB01372H
  • Santos CM, Tria MCR, Vergara RAMV, Ahmed F, Advincula RC, Rodrigues DF. Antimicrobial graphene polymer (PVK-GO) nanocomposite films. Chem Commun. 2011;47(31):8892–8894. doi:10.1039/c1cc11877c
  • Trop M, Novak M, Rodl S, Hellbom B, Kroell W, Goessler W. Silver-coated dressing acticoat caused raised liver enzymes and argyria-like symptoms in burn patient. J Trauma. 2006;60(3):648–652. doi:10.1097/01.ta.0000208126.22089.b6
  • Bouts BA. Images in clinical medicine. Argyria. N Engl J Med. 1999;340(20):1554. doi:10.1056/NEJM199905203402006
  • Hollinger MA. Toxicological aspects of topical silver pharmaceuticals. Crit Rev Toxicol. 1996;26(3):255–260. doi:10.3109/10408449609012524
  • Kong N, Jiang T, Zhou Z, Fu J. Cytotoxicity of polymerized resin cements on human dental pulp cells in vitro. Dent Mater. 2009;25(11):1371–1375. doi:10.1016/j.dental.2009.06.008
  • Liu X, Lee PY, Ho CM, et al. Silver nanoparticles mediate differential responses in keratinocytes and fibroblasts during skin wound healing. ChemMedChem. 2010;5(3):468–475. doi:10.1002/cmdc.200900502
  • Wright JB, Lam K, Buret AG, Olson ME, Burrell RE. Early healing events in a porcine model of contaminated wounds: effects of nanocrystalline silver on matrix metalloproteinases, cell apoptosis, and healing. Wound Repair Regen. 2002;10(3):141–151. doi:10.1046/j.1524-475X.2002.10308.x
  • Shah PN, Lin LY, Smolen JA, et al. Synthesis, characterization, and in vivo efficacy of shell cross-linked nanoparticle formulations carrying silver antimicrobials as aerosolized therapeutics. ACS Nano. 2013;7(6):4977–4987. doi:10.1021/nn400322f
  • Čı́k G, Bujdáková H, Šeršeň F. Study of fungicidal and antibacterial effect of the Cu (II)-complexes of thiophene oligomers synthesized in ZSM-5 zeolite channels. Chemosphere. 2001;44(3):313–319. doi:10.1016/S0045-6535(00)00306-4
  • Ulküseven B, Tavman A, Otük G, Birteksöz S. Antimicrobial activity of FeIII, CuII, AgI, ZnII and HgII complexes of 2-(2-hydroxy-5-bromo/nitro-phenyl)-1H-and 2-(2-hydroxyphenyl)-5-methyl/chloro/nitro-1H-benzimidazoles. Folia Microbiol. 2002;47(5):481–487. doi:10.1007/BF02818785
  • Chohan ZH, Supuran CT, Scozzafava A. Metalloantibiotics: synthesis and antibacterial activity of cobalt (II), copper (II), nickel (II) and zinc (II) complexes of kefzol. J Enzyme Inhib Med Chem. 2004;19(1):79–84. doi:10.1080/14756360310001624939