708
Views
10
CrossRef citations to date
0
Altmetric
REVIEW

Recent Advances in the Pharmaceutical and Biomedical Applications of Cyclodextrin-Capped Gold Nanoparticles

ORCID Icon, ORCID Icon, , , , , , , , ORCID Icon & show all
Pages 3247-3281 | Received 25 Jan 2023, Accepted 31 May 2023, Published online: 14 Jun 2023

References

  • Villiers A. Sur la fermentation de la fécule par l’action du ferment butyrique. Compt Rend Acad Sci. 1891;112:536–538.
  • D’Aria F, Pagano B, Giancola C. Thermodynamic properties of hydroxypropyl-β-cyclodextrin/guest interaction: a survey of recent studies. J Therm Anal Calorim. 2022;147(8):4889–4897. doi:10.1007/s10973-021-10958-1
  • Saenger W. Cyclodextrin inclusion compounds in research and industry. Angew Chemie Int Ed English. 1980;19(5):344–362.
  • Tian B, Xiao D, Hei T, Ping R, Hua S, Liu J. The application and prospects of cyclodextrin inclusion complexes and polymers in the food industry: a review. Polym Int. 2020;69(7):597–603. doi:10.1002/pi.5992
  • Endo T, Nagase H, Ueda H, Shigihara A, Kobayashi S, Nagai T. Isolation, purification, and characterization of Cyclomaltooctadecaose (v-Cyclodextrin), Cyclomaltononadecaose (ξ-Cyclodextrin), Cyclomaltoeicosaose (o-Cyclodextrin) and Cyclomaltoheneicosaose (π-Cyclodextrin). Chem Pharm Bull. 1998;46(11):1840–1843.
  • Rowe RC, Sheskey P, Quinn M. Handbook of Pharmaceutical Excipients. Libros Digitales-Pharmaceutical Press; 2009.
  • Morin-Crini N, Fourmentin S, Fenyvesi E, et al. 130 Years of Cyclodextrin Discovery for Health, Food, Agriculture, and the Industry: A Review. Vol. 19. Springer International Publishing; 2021. doi:10.1007/s10311-020-01156-w
  • Liu Z, Ye L, Xi J, Wang J. Cyclodextrin polymers: structure, synthesis, and use as drug carriers. Prog Polym Sci. 2021;118:101408. doi:10.1016/j.progpolymsci.2021.101408
  • Del Valle EMM. Cyclodextrins and their uses: a review. Process Biochem. 2004;39(9):1033–1046. doi:10.1016/S0032-9592(03)00258-9
  • Loftsson T, Duchene D. Cyclodextrins and their pharmaceutical applications. Int J Pharm. 2007;329(1–2):1–11. doi:10.1016/j.ijpharm.2006.07.009
  • Qi Z, Sikorski CT. Controlled delivery using cyclodextrin technology. Pharm Tech Eur. 1999;13(11):17–20.
  • Almawash S, El Hamd MA, Osman SK. Polymerized β-Cyclodextrin-based injectable hydrogel for sustained release of 5-Fluorouracil/Methotrexate mixture in breast cancer management: in vitro and In vivo analytical validations. Pharmaceutics. 2022;14(4):4. doi:10.3390/pharmaceutics14040817
  • Gidwani B, Vyas A. A Comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. Biomed Res Int. 2015;2015:675. doi:10.1155/2015/198268
  • Kim Y. Inclusion complexation of ziprasidone mesylate with β-cyclodextrin sulfobutyl ether. J Pharm Sci. 1998;87(12):1560–1567. doi:10.1021/js980109t
  • Pandey A. Cyclodextrin-based nanoparticles for pharmaceutical applications: a review. Environ Chem Lett. 2021;19(6):4297–4310. doi:10.1007/s10311-021-01275-y
  • Szejtli J. Introduction and general overview of cyclodextrin chemistry. Chem Rev. 1998;98(5):1743–1753. doi:10.1002/chin.199839312
  • Abdulaziz F, Salah D. Gold nanoparticles incorporated with cyclodextrins and its applications. J Biomater Nanobiotechnol. 2021;12(04):79–97. doi:10.4236/jbnb.2021.124007
  • Higuchi T, Connor KA. A phase solubility technique. Adv Anal Chem Instrum. 1965;4:117–211.
  • Paczkowska M, Szymanowska-Powałowska D, Mizera M, et al. Cyclodextrins as multifunctional excipients: influence of inclusion into β-cyclodextrin on physicochemical and biological properties of tebipenem pivoxil. PLoS One. 2019;14(1):1–22. doi:10.1371/journal.pone.0210694
  • Challa R, Ahuja A, Ali J, Khar RK. Cyclodextrins in drug delivery: an updated review. Aaps Pharmscitech. 2005;6(2):E329–E357.
  • Osman SK, Soliman GM, Abd El Rasoul S. Physically cross-linked hydrogels of beta-cyclodextrin polymer and poly(ethylene glycol)-cholesterol as delivery systems for macromolecules and small drug molecules. Curr Drug Deliv. 2015;12:415–424.
  • Rajbanshi B, Saha S, Das K, et al. Study to probe subsistence of host-guest inclusion complexes of α and β-cyclodextrins with biologically potent drugs for safety regulatory dischargement. Sci Rep. 2018;8(1):1–20. doi:10.1038/s41598-018-31373-x
  • Osman SK, Brandl FP, Zayed GM, Teßmar JK, Göpferich AM. Cyclodextrin based hydrogels: inclusion complex formation and micellization of adamantane and cholesterol grafted polymers. Polymer (Guildf). 2011;52(21):4806–4812. doi:10.1016/j.polymer.2011.07.059
  • Mohammad A, Singh S, Swain S. Cyclodextrins: concept to applications, regulatory issues and challenges. Nanomedicine Res J. 2020;5(3):202–214. doi:10.22034/NMRJ.2020.03.001
  • Saokham P, Muankaew C, Jansook P, Loftsson T. Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules. 2018;23(5):1–15. doi:10.3390/molecules23051161
  • Tomasik P, Schilling CH. Complexes of starch with organic guests. Adv Carbohydr Chem Biochem. 1998;53:263–343. doi:10.1016/s0065-2318(08)60047-5
  • Marques CS, Carvalho SG, Bertoli LD, et al. β-Cyclodextrin inclusion complexes with essential oils: obtention, characterization, antimicrobial activity and potential application for food preservative sachets. Food Res Int. 2019;119:(January):499–509. doi:10.1016/j.foodres.2019.01.016
  • Dora CP, Trotta F, Kushwah V, et al. Potential of erlotinib cyclodextrin nanosponge complex to enhance solubility, dissolution rate, in vitro cytotoxicity and oral bioavailability. Carbohydr Polym. 2016;137:339–349. doi:10.1016/j.carbpol.2015.10.080
  • Bilensoy E, Çırpanlı Y, Şen M, Doğan AL, Çalış S. Thermosensitive mucoadhesive gel formulation loaded with 5-Fu: cyclodextrin complex for HPV-induced cervical cancer. J Incl Phenom Macrocycl Chem. 2007;57(1–4):363–370. doi:10.1007/s10847-006-9259-y
  • Loftsson T, Jarho P, Másson M, Järvinen T. Cyclodextrins in drug delivery. Expert Opin Drug Deliv. 2005;2(2):335–351. doi:10.1517/17425247.2.1.335
  • Gadade DD, Pekamwar SS. Cyclodextrin based nanoparticles for drug delivery and theranostics. Adv Pharm Bull. 2020;10(2):166–183. doi:10.34172/apb.2020.022
  • Davis ME, Brewster ME. Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov. 2004;3(12):1023–1035. doi:10.1038/nrd1576
  • Crini G, Fourmentin S, Fenyvesi É, Torri G, Fourmentin M, Morin-Crini N. Cyclodextrins, from molecules to applications. Environ Chem Lett. 2018;16(4):1361–1375. doi:10.1007/s10311-018-0763-2
  • Liu Y, Chen Y, Gao X, Fu J, Hu L. Application of cyclodextrin in food industry. Crit Rev Food Sci Nutr. 2020;62(10):2627–2640. doi:10.1080/10408398.2020.1856035
  • Matencio A, Hoti G, Monfared YK, et al. Cyclodextrin monomers and polymers for drug activity enhancement. Polymers (Basel). 2021;13(11):1–18. doi:10.3390/polym13111684
  • Petitjean M, García-Zubiri IX, Isasi JR. History of cyclodextrin-based polymers in food and pharmacy: a review. Environ Chem Lett. 2021;19(4):3465–3476. doi:10.1007/s10311-021-01244-5
  • Yuan Z, Liu H, Wu H, et al. Cyclodextrin Hydrogels: rapid Removal of Aromatic Micropollutants and Adsorption Mechanisms. J Chem Eng Data. 2020;65(2):678–689. doi:10.1021/acs.jced.9b00913
  • Malik NS, Ahmad M, Alqahtani MS, et al. β-cyclodextrin chitosan-based hydrogels with tunable pH-responsive properties for controlled release of Acyclovir: design, characterization, safety, and pharmacokinetic evaluation. Drug Deliv. 2021;28(1):1093–1108. doi:10.1080/10717544.2021.1921074
  • Hong W, Guo F, Yu N, et al. A novel folic acid receptor-targeted drug delivery system based on curcumin-loaded β-cyclodextrin nanoparticles for cancer treatment. Drug Des Devel Ther. 2021;15:(May):2843–2855. doi:10.2147/DDDT.S320119
  • Xu W, Li X, Wang L, et al. Design of cyclodextrin-based functional systems for biomedical applications. Front Chem. 2021;9:(February):1–13. doi:10.3389/fchem.2021.635507
  • Balaji A, Pandey VP, Srinath MS, Manavalan R. Synthesis and characterization studies of cisplatin/hydroxypropyl-β-cyclodextrin complex. Pharmacologyonline. 2009;1:1135–1143.
  • Zhang L, Man S, Qiu H, et al. Curcumin-cyclodextrin complexes enhanced the anti-cancer effects of curcumin. Environ Toxicol Pharmacol. 2016;48:31–38. doi:10.1016/j.etap.2016.09.021
  • Nanda A, Sahoo RN, Pramanik A, et al. Drug-in-mucoadhesive type film for ocular anti-inflammatory potential of amlodipine: effect of sulphobutyl-ether-beta-cyclodextrin on permeation and molecular docking characterization. Colloids Surfaces B Biointerfaces. 2018;172:(August):555–564. doi:10.1016/j.colsurfb.2018.09.011
  • Vieira da Silva SA, Clemente A, Rocha J, et al. Anti-inflammatory effect of limonin from cyclodextrin (un)processed Orange juices in in vivo acute inflammation and chronic rheumatoid arthritis models. J Funct Foods. 2018;49(August):146–153. doi:10.1016/j.jff.2018.08.024
  • Ling W, Xuehua J, Weijuan X, Chenrui L. Complexation of tanshinone IIA with 2-hydroxypropyl-β-cyclodextrin: effect on aqueous solubility, dissolution rate, and intestinal absorption behavior in rats. Int J Pharm. 2007;341(1–2):58–67. doi:10.1016/j.ijpharm.2007.03.046
  • Wu Y, Xiao Y, Yue Y, Zhong K, Zhao Y, Gao H. A deep insight into mechanism for inclusion of 2R,3R-dihydromyricetin with cyclodextrins and the effect of complexation on antioxidant and lipid-lowering activities. Food Hydrocoll. 2020;103:105718. doi:10.1016/j.foodhyd.2020.105718
  • Lahiani-Skiba M, Bounoure F, Fessi H, Skiba M. Effect of cyclodextrins on lonidamine release and in-vitro cytotoxicity. J Incl Phenom Macrocycl Chem. 2011;69(3–4):481–485. doi:10.1007/s10847-010-9872-7
  • Jacob S, Nair AB. Cyclodextrin complexes: perspective from drug delivery and formulation. Drug Dev Res. 2018;79(5):201–217. doi:10.1002/ddr.21452
  • Mura P. Analytical techniques for characterization of cyclodextrin complexes in the solid state: a review. J Pharm Biomed Anal. 2015;113:226–238. doi:10.1016/j.jpba.2015.01.058
  • Mura P, Adragna E, Rabasco AM, et al. Effects of the host cavity size and the preparation method on the physicochemical properties of ibuproxam-cyclodextrin systems. Drug Dev Ind Pharm. 1999;25(3):279–287.
  • Mura P, Faucci MT, Parrini PL, Furlanetto S, Pinzauti S. Influence of the preparation method on the physicochemical properties of ketoprofen–cyclodextrin binary systems. Int J Pharm. 1999;179(1):117–128.
  • Allahyari S, Trotta F, Valizadeh H, Jelvehgari M, Zakeri-Milani P. Cyclodextrin based nanosponges as promising carriers for active agents. Expert Opin Drug Deliv. 2019;16(5):467–479. doi:10.1080/17425247.2019.1591365
  • Tannous M, Caldera F, Hoti G, Dianzani U, Cavalli R, Trotta F. Drug-encapsulated cyclodextrin nanosponges. In: supramolecules in Drug Discovery and Drug Delivery: methods and Protocols. Methods in Molecular Biology. 2021;2207. doi:10.1007/978-1-0716-0920-0
  • Sadaquat H, Akhtar M. Comparative effects of β-cyclodextrin, HP-β-cyclodextrin and SBE7-β-cyclodextrin on the solubility and dissolution of docetaxel via inclusion complexation. J Incl Phenom Macrocycl Chem. 2020;96(3–4):333–351. doi:10.1007/s10847-020-00977-0
  • Zia V, Rajewski RA, Stella VJ. Effect of cyclodextrin charge on complexation of neutral and charged substrates: comparison of (SBE)7m-β-CD to HP-β-CD. Pharm Res. 2001;18(5):667–673. :
  • Nagase Y, Hirata M, Wada K, et al. Improvement of some pharmaceutical properties of DY-9760e by sulfobutyl ether b-cyclodextrin. Int J Pharm. 2001;229:163–172. doi:10.1007/s10847-010-9870-9
  • Tros de Ilarduya MC, Martín C, Goñi MM, Martínez-Ohárriz MC. Solubilization and interaction of sulindac with β-cyclodextrin in the solid state and in aqueous solution. Drug Dev Ind Pharm. 1998;24(3):301–306. doi:10.3109/03639049809085624
  • Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J Pharm Sci. 1996;85(10):1017–1025. doi:10.1021/js950534b
  • Dalmora MEA. Inclusion complex of piroxicam with β-cyclodextrin and incorporation in hexadecyltrimethylammonium bromide based microemulsion. Int J Pharm. 1999;184(2):184.
  • Cedillo-Flores OE, Rodríguez-Laguna N, Hipólito-Nájera AR, Nivón-Ramírez D, Gómez-Balderas R, Moya-Hernández R. Effect of the pH on the thermodynamic stability of inclusion complexes of thymol and carvacrol in β-cyclodextrin in water. Food Hydrocoll. 2022;124(March):2021. doi:10.1016/j.foodhyd.2021.107307
  • Yavuz B, Bilensoy E, Vural I, Şumnu M. Alternative oral exemestane formulation: improved dissolution and permeation. Int J Pharm. 2010;398(1–2):137–145. doi:10.1016/j.ijpharm.2010.07.046
  • Wadhwa G, Kumar S, Chhabra L, Mahant S, Rao R. Essential oil–cyclodextrin complexes: an updated review. J Incl Phenom Macrocycl Chem. 2017;89(1–2):39–58. doi:10.1007/s10847-017-0744-2
  • Jiang L, Yang J, Wang Q, Ren L, Zhou J. Physicochemical properties of catechin/β-cyclodextrin inclusion complex obtained via co-precipitation. CYTA - J Food. 2019;17(1):544–551. doi:10.1080/19476337.2019.1612948
  • Jug M, Mura PA. Grinding as solvent-free green chemistry approach for cyclodextrin inclusion complex preparation in the solid state. Pharmaceutics. 2018;10:4. doi:10.3390/pharmaceutics10040189
  • Banchero M. Supercritical carbon dioxide as a green alternative to achieve drug complexation with cyclodextrins. Pharmaceuticals. 2021;14:6. doi:10.3390/ph14060562
  • Kaur K, Jindal R, Jindal D. Synthesis, characterization and studies on host-guest interactions of inclusion complexes of metformin hydrochloride with β–cyclodextrin. J Mol Liq. 2019;282:162–168. doi:10.1016/j.molliq.2019.02.127
  • Khushbu JR. Cyclodextrin mediated controlled release of edaravone from pH-responsive sodium alginate and chitosan based nanocomposites. Int J Biol Macromol. 2022;202:(January):11–25. doi:10.1016/j.ijbiomac.2022.01.001
  • Al-Marzouqi AH, Elwy HM, Shehadi I, Adem A. Physicochemical properties of antifungal drug-cyclodextrin complexes prepared by supercritical carbon dioxide and by conventional techniques. J Pharm Biomed Anal. 2009;49(2):227–233. doi:10.1016/j.jpba.2008.10.032
  • Moyano JR, Arias MJ, Gines JM, Perez JI, Rabasco AM. Dissolution Behavior of Oxazepam in Presence of Cyclodextrins: evaluation of Oxazepam-Dimeb Binary Systemxs. Drug Dev Ind Pharm. 1997;23(4):379–385.
  • Li B, Li N, Wang S, Gao J, Fang S. Pharmacokinetics of injectable beta -Cyclodextrin-Oridonin inclusion complex, a novel formulation of oridonin in Wistar rats. Natl J Physiol Pharm Pharmacol. 2012;2(1):52–57.
  • Castillo JA, Palomo-Canales J, Garcia JJ, Lastres JL, Bolas F, Torrado JJ. Preparation and characterization of albendazole β-cyclodextrin complexes. Drug Dev Ind Pharm. 1999;25(12):1241–1248.
  • Cid-Samamed A, Rakmai J, Mejuto JC, Simal-Gandara J, Astray G. Cyclodextrins inclusion complex: preparation methods, analytical techniques and food industry applications. Food Chem. 2022;384:132467. doi:10.1016/j.foodchem.2022.132467
  • Parlati S, Gobetto R, Barolo C, et al. Preparation and application of a β-cyclodextrin-disperse/reactive dye complex. J Incl Phenom Macrocycl Chem. 2007;57(1–4):463–470. doi:10.1007/s10847-006-9235-6
  • Pereva S, Sarafska T, Bogdanova S, Spassov T. Efficiency of “cyclodextrin-ibuprofen” inclusion complex formation. J Drug Deliv Sci Technol. 2016;35:34–39. doi:10.1016/j.jddst.2016.04.006
  • Ghorab MK, Adeyeye MC. Enhancement of ibuprofen dissolution via wet granulation with β-cyclodextrin. Pharm Dev Technol. 2001;6(3):305–314. doi:10.1081/PDT-100002611
  • Reddy MN, Rehana T, Ramakrishna S, Chowdary KPR, Diwan PV. β-cyclodextrin complexes of celecoxib: molecular-modeling, characterization, and dissolution studies. AAPS J. 2004;6(1):1–9. doi:10.1208/ps060107
  • Patel HM, Suhagia BN, Shah SA, Rathod IS, Parmar VK. Preparation and characterization of etoricoxib-β-cyclodextrin complexes prepared by the kneading method. Acta Pharm. 2007;57(3):351–359. doi:10.2478/v10007-007-0028-2
  • Swami G, Koshy MK, Pandey M, Saraf SA. Preparation and characterization of domperidone- β-cyclodextrin complexes prepared by kneading method. Int J Adv Pharm Sci. 2010;1(1):68–74. doi:10.5138/ijaps.2010.0976.1055.01008
  • Songkro S, Hayook N, Jaisawang J, Maneenuan D, Chuchome T, Kaewnopparat N. Investigation of inclusion complexes of citronella oil, citronellal and citronellol with b-cyclodextrin for mosquito repellent. J Incl Phenom Macrocycl Chem. 2012;72(3–4):339–355. doi:10.1007/s10847-011-9985-7
  • Pralhad T, Rajendrakumar K. Study of freeze-dried quercetin-cyclodextrin binary systems by DSC, FT-IR, X-ray diffraction and SEM analysis. J Pharm Biomed Anal. 2004;34(2):333–339. doi:10.1016/S0731-7085(03)00529-6
  • Villalonga R, Cao R, Fragoso A, Damiao AE, Ortiz PD, Caballero J. Supramolecular-mediated bienzymatic immobilization of catalase and superoxide dismutase on β-cyclodextrin-modified gold nanospheres. J Mol Catal B Enzym. 2005;35:79.
  • Li N, Wang N, Wu T, et al. Preparation of curcumin-hydroxypropyl-β-cyclodextrin inclusion complex by cosolvency-lyophilization procedure to enhance oral bioavailability of the drug. Drug Dev Ind Pharm. 2018;44(12):1966–1974. doi:10.1080/03639045.2018.1505904
  • Elgindy N, Elkhodairy K, Molokhia A, Elzoghby A. Lyophilization monophase solution technique for improvement of the physicochemical properties of an anticancer drug, flutamide. Eur J Pharm Biopharm. 2010;74(2):397–405. doi:10.1016/j.ejpb.2009.11.011
  • Eid EEM, Abdul AB, Suliman FEO, Sukari MA, Rasedee A, Fatah SS. Characterization of the inclusion complex of zerumbone with hydroxypropyl-β-cyclodextrin. Carbohydr Polym. 2011;83(4):1707–1714. doi:10.1016/j.carbpol.2010.10.033
  • Ozdemir N, Pola CC, Teixeira BN, Hill LE, Bayrak A, Gomes CL. Preparation of black pepper oleoresin inclusion complexes based on beta-cyclodextrin for antioxidant and antimicrobial delivery applications using kneading and freeze drying methods: a comparative study. Lwt-Food Sci Technol. 2018;91:439–445. doi:10.1016/j.lwt.2018.01.046
  • Skalko-basnet N, Pavelic Z, Becirevic-lacan M. Liposomes containing drug and cyclodextrin prepared by the one-step spray-drying method. Drug Dev Ind Pharm. 2000;26(12):1279–1284.
  • Cabral-Marques H, Almeida R. Optimisation of spray-drying process variables for dry powder inhalation (DPI) formulations of corticosteroid/cyclodextrin inclusion complexes. Eur J Pharm Biopharm. 2009;73(1):121–129. doi:10.1016/j.ejpb.2009.05.002
  • Borghetti GS, Lula IS, Sinisterra RD, Bassani VL. Quercetin/β-Cyclodextrin solid complexes prepared in aqueous solution followed by spray-drying or by physical mixture. AAPS PharmSciTech. 2009;10(1):235–242. doi:10.1208/s12249-009-9196-3
  • Miletic T, Kyriakos K, Graovac A, Ibric S. Spray-dried voriconazole-cyclodextrin complexes: solubility, dissolution rate and chemical stability. Carbohydr Polym. 2013;98(1):122–131. doi:10.1016/j.carbpol.2013.05.084
  • Watson MA, Lea JM, Bett-Garber KL. Spray drying of pomegranate juice using maltodextrin/cyclodextrin blends as the wall material. Food Sci Nutr. 2017;5(3):820–826. doi:10.1002/fsn3.467
  • Ramos AI, Braga TM, Silva P, et al. Chloramphenicol·cyclodextrin inclusion compounds: co-dissolution and mechanochemical preparations and antibacterial action. CrystEngComm. 2013;15(15):2822–2834. doi:10.1039/c3ce26414a
  • Mura P, Faucci MT, Maestrelli F, Furlanetto S, Pinzauti S. Characterization of physicochemical properties of naproxen systems with amorphous β-cyclodextrin-epichlorohydrin polymers. J Pharm Biomed Anal. 2002;29(6):1015–1024. doi:10.1016/S0731-7085(02)00142-5
  • Tan Q, He D, Wu M, et al. Characterization, activity, and computer modeling of a molecular inclusion complex containing rifaldazine. Int J Nanomedicine. 2013;8:477–484. doi:10.2147/IJN.S38937
  • He D, Deng P, Yang L, et al. Molecular encapsulation of rifampicin as an inclusion complex of hydroxypropyl-β-cyclodextrin: design; characterization and in vitro dissolution. Colloids Surfaces B Biointerfaces. 2013;103:580–585. doi:10.1016/j.colsurfb.2012.10.062
  • Cugovčan M, Jablan J, Lovrić J, Cinčić D, Galić N, Jug M. Biopharmaceutical characterization of praziquantel cocrystals and cyclodextrin complexes prepared by grinding. J Pharm Biomed Anal. 2017;137:42–53. doi:10.1016/j.jpba.2017.01.025
  • Ali HRH, Saleem IY, Tawfeek HM. Insight into inclusion complexation of indomethacin nicotinamide cocrystals. J Incl Phenom Macrocycl Chem. 2016;84(3–4):179–188. doi:10.1007/s10847-016-0594-3
  • Jug M, Mennini N, Kövér KE, Mura P. Comparative analysis of binary and ternary cyclodextrin complexes with econazole nitrate in solution and in solid state. J Pharm Biomed Anal. 2014;91:81–91. doi:10.1016/j.jpba.2013.12.029
  • Majewska K, Skwierawska A, Kamińska B, Prześniak-Welenc M. Improvement of opipramol base solubility by complexation with β-cyclodextrin. Supramol Chem. 2018;30(1):20–31. doi:10.1080/10610278.2017.1350677
  • Malaquias LFB, Sá-Barreto LCL, Freire DO, et al. Taste masking and rheology improvement of drug complexed with beta-cyclodextrin and hydroxypropyl-β-cyclodextrin by hot-melt extrusion. Carbohydr Polym. 2018;185:19–26. doi:10.1016/j.carbpol.2018.01.011
  • Conceição J, Farto-Vaamonde X, Goyanes A, et al. Hydroxypropyl-β-cyclodextrin-based fast dissolving carbamazepine printlets prepared by semisolid extrusion 3D printing. Carbohydr Polym. 2019;221:55–62. doi:10.1016/j.carbpol.2019.05.084
  • Granados PA, Pinho LAG, Sa-Barreto LL, Gratieri T, Gelfuso GM, Cunha-Filho M. Application of hot-melt extrusion in the complexation of naringenin with cyclodextrin using hydrophilic polymers. Adv Powder Technol. 2022;33(1):103380. doi:10.1016/j.apt.2021.11.032
  • Sauceau M, Rodier E, Fages J. Preparation of inclusion complex of piroxicam with cyclodextrin by using supercritical carbon dioxide. J Supercrit Fluids. 2008;47(2):326–332. doi:10.1016/j.supflu.2008.07.006
  • Banchero M, Ronchetti S, Manna L. Characterization of ketoprofen/methyl-β-cyclodextrin complexes prepared using supercritical carbon dioxide. J Chem. 2013;2013:45. doi:10.1155/2013/583952
  • Hussein K, Türk M, Wahl MA. Comparative evaluation of Ibuprofen/β-cyclodextrin complexes obtained by supercritical carbon dioxide and other conventional methods. Pharm Res. 2007;24(3):585–592. doi:10.1007/s11095-006-9177-0
  • Al-Marzouqi AH, Jobe B, Dowaidar A, Maestrelli F, Mura P. Evaluation of supercritical fluid technology as preparative technique of benzocaine-cyclodextrin complexes-Comparison with conventional methods. J Pharm Biomed Anal. 2007;43(2):566–574. doi:10.1016/j.jpba.2006.08.019
  • Al-Marzouqi A, Jobe B, Corti G, Cirri M, Mura P. Physicochemical characterization of drug-cyclodextrin complexes prepared by supercritical carbon dioxide and by conventional techniques. J Incl Phenom Macrocycl Chem. 2007;57(1–4):223–231. doi:10.1007/s10847-006-9192-0
  • Al-Marzouqi AH, Solieman A, Shehadi I, Adem A. Influence of the preparation method on the physicochemical properties of econazole-β-cyclodextrin complexes. J Incl Phenom Macrocycl Chem. 2008;60(1–2):85–93. doi:10.1007/s10847-007-9356-6
  • Rudrangi SRS, Trivedi V, Mitchell JC, Wicks SR, Alexander BD. Preparation of olanzapine and methyl-β-cyclodextrin complexes using a single-step, organic solvent-free supercritical fluid process: an approach to enhance the solubility and dissolution properties. Int J Pharm. 2015;494(1):408–416. doi:10.1016/j.ijpharm.2015.08.062
  • Mohammed AM, Faisal W, Saleh KI, Osman SK. Aqueous solubility and dissolution rate improvement of etodolac via inclusion complexation technique. Int J Pharmacol Pharm Res Hum Journals. 2016;6(3):304–318.
  • Adeoye O, Costa C, Casimiro T, Aguiar-Ricardo A, Cabral-Marques H. Preparation of ibuprofen/hydroxypropyl-Γ-cyclodextrin inclusion complexes using supercritical CO2-assisted spray drying. J Supercrit Fluids. 2018;133:479–485. doi:10.1016/j.supflu.2017.11.009
  • Ling XY, Malaquin L, Reinhoudt DN, Wolf H, Huskens J. An in situ study of the adsorption behavior of functionalized particles on self-assembled monolayers via different chemical interactions. Langmuir. 2007;23(20):9990–9999. doi:10.1021/la701671s
  • Maestrelli F, González-Rodríguez ML, Rabasco AM, Mura P. Preparation and characterisation of liposomes encapsulating ketoprofen-cyclodextrin complexes for transdermal drug delivery. Int J Pharm. 2005;298(1):55–67. doi:10.1016/j.ijpharm.2005.03.033
  • Veiga F, Fernandes C, Maincent P. Influence of the preparation method on the physicochemical properties of tolbutamide/cyclodextrin binary systems. Drug Dev Ind Pharm. 2001;27(6):523–532. doi:10.1081/DDC-100105177
  • Shan-Yang L, Yuh-Horng K. Solid particulates of drug-β-cyclodextrin inclusion complexes directly prepared by a spray-drying technique. Int J Pharm. 1989;56(3):249–259. doi:10.1016/0378-5173(89)90022-7
  • Yang X, Shen J, Liu J, et al. Spray-drying of hydroxypropyl β-cyclodextrin microcapsules for co-encapsulation of resveratrol and piperine with enhanced solubility. Crystals. 2022;12:5. doi:10.3390/cryst12050596
  • Gao X, Chen G, Ning L. Plasmonic characteristics of nanorod-based metallic nanostructures. Opt Laser Technol. 2013;48:394–400. doi:10.1016/j.optlastec.2012.10.036
  • Wanunu M, Popovitz-Biro R, Cohen H, Vaskevich A, Rubinstein I. Coordination-based gold nanoparticle layers. J Am Chem Soc. 2005;127(25):9207–9215. doi:10.1021/ja050016v
  • Barrientos L, Yutronic N, Del monte F, Gutiérrez MC, Jara P. Ordered arrangement of gold nanoparticles on an α-cyclodextrin-dodecanethiol inclusion compound produced by magnetron sputtering. New J Chem. 2007;31(8):1400–1402. doi:10.1039/b706346f
  • Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. The golden age: gold nanoparticles for biomedicine. Chem Soc Rev. 2012;41(7):2740–2779. doi:10.1039/c1cs15237h
  • Liu Y, Male KB, Bouvrette P, Luong JHT. Control of the size and distribution of gold nanoparticles by unmodified cyclodextrins. Chem Mater. 2003;15(22):4172–4180. doi:10.1021/cm0342041
  • Nie S, Xing Y, Kim GJ, Simons JW. Nanotechnology applications in cancer. Annu Rev Biomed Eng. 2007;9:257–288. doi:10.1146/annurev.bioeng.9.060906.152025
  • Wang MD, Shin DM, Simons JW, Nie S. Nanotechnology for targeted cancer therapy. Expert Rev Anticancer Ther. 2007;7(6):833–837. doi:10.1586/14737140.7.6.833
  • You -C-C, Miranda OR, Gider B, et al. Detection and identification of proteins using nanoparticle-fluorescent polymer “chemical nose” sensors. Nat Nanotechnol. 2007;2(5):318–323. doi:10.1038/nnano.2007.99
  • Bhattacharya R, Patra CR, Earl A, et al. Attaching folic acid on gold nanoparticles using noncovalent interaction via different polyethylene glycol backbones and targeting of cancer cells. Nanomed Nanotechnol Biol Med. 2007;3(3):224–238. doi:10.1016/j.nano.2007.07.001
  • Li J, Lou Z. Synthesis and applications of gold nanoparticles. Pharmacologyonline. 2021;3:1870–1874. doi:10.47583/ijpsrr.2022.v77i01.003
  • Faraday M. The Bakerian Lecture: experimental relations of gold (and other metals) to light. Philos Trans R Soc London. 1857;147:145–181. doi:10.1098/rstl.1857.0011
  • Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc. 1951;11(c):55–75. doi:10.1039/DF9511100055
  • Hayat MA. Colloidal Gold: Principles, Methods, and Applications. Elsevier; 2012.
  • Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci. 1973;241(105):20–22.
  • Zhao L, Jiang D, Cai Y, Ji X, Xie R, Yang W. Tuning the size of gold nanoparticles in the citrate reduction by chloride ions. Nanoscale. 2012;4(16):5071–5076. doi:10.1039/c2nr30957b
  • Shah M, Badwaik V, Kherde Y, et al. Gold nanoparticles : various methods of synthesis and antibacterial applications. Front Biosci. 2014;19:1320–1344.
  • Esumi K, Matsuhisa K, Torigoe K. Preparation of rodlike gold particles by UV irradiation using cationic micelles as a template. Langmuir. 1995;11:3285–3287.
  • Valden M, Lai X, Goodman DW. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science. 1998;281(5383):1647–1650.
  • Veith GM, Lupini AR, Pennycook SJ, Ownby GW, Dudney NJ. Nanoparticles of gold on γ-Al2O3 produced by dc magnetron sputtering. J Catal. 2005;231(1):151–158. doi:10.1016/j.jcat.2004.12.008
  • Kabashin AV, Meunier M, Kingston C, Luong JHT. Fabrication and characterization of gold nanoparticles by femtosecond laser ablation in an aqueous solution of cyclodextrins. J Phys Chem B. 2003;107(19):4527–4531. doi:10.1021/jp034345q
  • Usman AI, Abdul Aziz A, Abu Noqta O. Application of green synthesis of gold nanoparticles: a review. J Teknol. 2017;79(5):1–5. doi:10.11113/jt.v81.11409
  • Santhosh PB, Julia Genova HC. Green synthesis of gold nanoparticles: an eco-friendly approach. Chemistry. 2015;4:345–369. doi:10.3390/chemistry4020026
  • Teimuri-Mofrad R, Hadi R, Tahmasebi B, Farhoudian S, Mehravar M, Nasiri R. Green synthesis of gold nanoparticles using plant extract: mini-review. Nanochemistry Res. 2017;2(1):8–19. doi:10.22036/ncr.2017.01.002
  • Kumar S, Gandhi KS, Kumar R. Modeling of formation of gold nanoparticles by citrate method. Ind Eng Chem Res. 2007;46(10):3128–3136. doi:10.1021/ie060672j
  • Sivaraman SK, Kumar S, Santhanam V. Monodisperse sub-10 nm gold nanoparticles by reversing the order of addition in Turkevich method – the role of chloroauric acid. J Colloid Interface Sci. 2011;361(2):543–547. doi:10.1016/j.jcis.2011.06.015
  • Ojea-Jiménez I, Romero FM, Bastús NG, Puntes V. Small gold nanoparticles synthesized with sodium citrate and heavy water: insights into the reaction mechanism. J Phys Chem C. 2010;114(4):1800–1804. doi:10.1021/jp9091305
  • Merza KS, Al-Attabi HD, Abbas ZM, Yusr HA. Comparative study on methods for preparation of gold nanoparticles. Green Sustain Chem. 2012;2(1):26–28. doi:10.4236/gsc.2012.21005
  • Waters CA, Mills AJ, Johnson KA, Schiffrin DJ. Purification of dodecanethiol derivatised gold nanoparticles. Chem Commun. 2003;3(4):540–541. doi:10.1039/b211874b
  • Luty-błocho M, Fitzner K, Hessel V, Löb P, Maskos M, Metzke D. Synthesis of gold nanoparticles in an interdigital micromixer using ascorbic acid and sodium borohydride as reducers. Chem Eng. 2011;171:279–290. doi:10.1016/j.cej.2011.03.104
  • Xu Z-C, Shen C-M, Xiao C-W, et al. Wet chemical synthesis of gold nanoparticles using silver seeds: a shape control from nanorods to hollow spherical nanoparticles. Nanotechnology. 2007;18(11):115608. doi:10.1088/0957-4484/18/11/115608
  • Shao L, Susha AS, Cheung LS, Sau TK, Rogach AL, Wang J. Plasmonic properties of single multispiked gold nanostars: correlating modeling with experiments. Langmuir. 2012;28(24):8979–8984. doi:10.1021/la2048097
  • Sau TK, Rogach AL, Döblinger M, Feldmann J. One-step high-yield aqueous synthesis of size-tunable multispiked gold nanoparticles. Small. 2011;7(15):2188–2194. doi:10.1002/smll.201100365
  • Prasad BLV, Stoeva SI, Sorensen CM, Klabunde KJ. Digestive ripening of thiolated gold nanoparticles: the effect of alkyl chain length. Langmuir. 2002;18:7515–7520.
  • John MG, Tibbetts KM. One-step femtosecond laser ablation synthesis of sub-3 nm gold nanoparticles stabilized by silica. Appl Surf Sci. 2019;475:1048–1057. doi:10.1016/j.apsusc.2019.01.042
  • Gingery D, Bühlmann P. Formation of gold nanoparticles on multiwalled carbon nanotubes by thermal evaporation. Carbon N Y. 2008;46(14):1966–1972. doi:10.1016/j.carbon.2008.08.007
  • Gaspar D, Pimentel AC, Mateus T, et al. Influence of the layer thickness in plasmonic gold nanoparticles produced by thermal evaporation. Sci Rep. 2013;3:1469. doi:10.1038/srep01469
  • Aswathy B, Avadhani GS, Suji S, Sony G. Synthesis of β-cyclodextrin functionalized gold nanoparticles for the selective detection of Pb2+ ions from aqueous solution. Front Mater Sci. 2012;6(2):168–175. doi:10.1007/s11706-012-0165-5
  • George JM, Mathew B. Cyclodextrin-mediated gold nanoparticles as multisensing probe for the selective detection of hydroxychloroquine drug. Korean J Chem Eng. 2021;38(3):624–634. doi:10.1007/s11814-020-0719-7
  • Philip D. Honey mediated green synthesis of gold nanoparticles. Spectrochim Acta. 2009;73(4):650–653. doi:10.1016/j.saa.2009.03.007
  • Cherian T, Maity D, Kumar R, et al. Green chemistry based gold nanoparticles synthesis using the marine bacterium Lysinibacillus odysseyi PBCW2 and their multitudinous activities. Nanomaterials. 2022;12(17):ye6. doi:10.3390/nano12172940
  • Zhang X, Qu Y, Shen W, et al. Biogenic synthesis of gold nanoparticles by yeast Magnusiomyces ingens LH-F1 for catalytic reduction of nitrophenols. Colloids Surfaces a Physicochem Eng Asp. 2016;497:280–285. doi:10.1016/j.colsurfa.2016.02.033
  • Molnár Z, Bódai V, Szakacs G, et al. Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Sci Rep. 2018;8(1):1–12. doi:10.1038/s41598-018-22112-3
  • Ramakrishna M, Rajesh Babu D, Gengan RM, Chandra S, Nageswara Rao G. Green synthesis of gold nanoparticles using marine algae and evaluation of their catalytic activity. J Nanostructure Chem. 2016;6(1):1–13. doi:10.1007/s40097-015-0173-y
  • Colin JA, Pech-Pech IE, Oviedo M, Águila SA, Romo-Herrera JM, Contreras OE. Gold nanoparticles synthesis assisted by marine algae extract: biomolecules shells from a green chemistry approach. Chem Phys Lett. 2018;708:(August):210–215. doi:10.1016/j.cplett.2018.08.022
  • Sadeghi B, Mohammadzadeh M, Babakhani B. Green synthesis of gold nanoparticles using Stevia rebaudiana leaf extracts: characterization and their stability. J Photochem Photobiol B Biol. 2015;148:101–106. doi:10.1016/j.jphotobiol.2015.03.025
  • Awad MA, Eisa NE, Virk P, et al. Green synthesis of gold nanoparticles: preparation, characterization, cytotoxicity, and anti-bacterial activities. Mater Lett. 2019;256:126608. doi:10.1016/j.matlet.2019.126608
  • Bhattacharya R, Mukherjee P. Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev. 2008;60(11):1289–1306. doi:10.1016/j.addr.2008.03.013
  • Burda C, Chen X, Narayanan R, El-Sayed MA. Chemistry and properties of nanocrystals of different shapes. Chem Rev. 2005;105(4):1025–1102. doi:10.1021/cr030063a
  • Mulvaney P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir. 1996;12(3):788–800. doi:10.1021/la9502711
  • Link S, El-Sayed MA. Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. J Phys Chem B. 1999;103(40):8410–8426. doi:10.1021/jp9917648
  • Liu J, Mendoza S, Roma E, Lynn MJ, Xu R, Kaifer AE. Cyclodextrin-modified gold nanospheres. Host-guest interactions at work to control colloidal properties. J Am Chem Soc. 1999;121(9):4304–4305.
  • Wang Y, Li H, Jin Q, Ji J. Intracellular host-guest assembly of gold nanoparticles triggered by glutathione. Chem Commun. 2016;52(3):582–585. doi:10.1039/c5cc07195j
  • Memişoǧlu E, Bochot A, Şen M, Duchêne D, Hincal AA. Non-surfactant nanospheres of progesterone inclusion complexes with amphiphilic β-cyclodextrins. Int J Pharm. 2003;251(1–2):143–153. doi:10.1016/S0378-5173(02)00593-8
  • Da Silveira AM, Ponchel G, Puisieux F, Duchêne D. Combined poly(isobutylcyanoacrylate) and cyclodextrins nanoparticles for enhancing the encapsulation of lipophilic drugs. Pharm Res. 1998;15(7):1051–1055. doi:10.1023/A:1011982211632
  • Duchêne D. Cyclodextrins in targeting Application to nanoparticles. Adv Drug Deliv Rev. 1999;36(1):29–40. doi:10.1016/S0169-409X(98)00053-2
  • Wang Y, Han Y, Tan X, Dai Y, Xia F, Zhang X. Cyclodextrin capped gold nanoparticles (AuNP@CDs): from synthesis to applications. J Mater Chem B. 2021;9(11):2584–2593. doi:10.1039/d0tb02857f
  • Carofiglio T, Fornasier R, Jicsinszky L, Tonellato U, Turco C. Synthesis, characterization and chemisorption on gold of a β-cyclodextrin–lipoic acid conjugate. Tetrahedron Lett. 2001;42(31):5241–5244. doi:10.1016/S0040-4039(01)01001-2
  • Liu J, Ong W, Román E, Lynn MJ, Kaifer AE. Cyclodextrin-modified gold nanospheres. Langmuir. 2000;16(7):3000–3002. doi:10.1021/la991519f
  • Manickam P, Vashist A, Madhu S, et al. Gold nanocubes embedded biocompatible hybrid hydrogels for electrochemical detection of H2O2. Bioelectrochemistry. 2020;131:107373. doi:10.1016/j.bioelechem.2019.107373
  • Neri G, Cordaro A, Scala A, Cordaro M, Mazzaglia A, Piperno A. PEGylated bis-adamantane carboxamide as guest bridge for graphene poly-cyclodextrin gold nanoassemblies. J Mol Struct. 2021;1240:130519. doi:10.1016/j.molstruc.2021.130519
  • Adeli M, Sarabi RS, Yadollahi Farsi R, Mahmoudi M, Kalantari M. Polyrotaxane/gold nanoparticle hybrid nanomaterials as anticancer drug delivery systems. J Mater Chem. 2011;21(46):18686–18695. doi:10.1039/c1jm12412a
  • Andreani SA, Tachrim ZP, et al. The effect of α-cyclodextrin and β-cyclodextrin as stabilizing agents on the size of gold nanoparticles. AIP Conference Proceedings. Vol 2493. AIP Publishing LLC; 2022:060005.
  • Shi Y, Goodisman J, Dabrowiak JC. Cyclodextrin capped gold nanoparticles as a delivery vehicle for a prodrug of cisplatin. Inorg Chem. 2013;52(16):9418–9426. doi:10.1021/ic400989v
  • Yang C, Wang X, Li H, Tan E, Lim CT, Li J. Cationic polyrotaxanes as gene carriers: physicochemical properties and real-time observation of DNA complexation, and gene transfection in cancer cells. J Phys Chem B. 2009;113(22):7903–7911. doi:10.1021/jp901302f
  • Zhang X, Zhu X, Ke F, et al. Preparation and self-assembly of amphiphilic triblock copolymers with polyrotaxane as a middle block and their application as carrier for the controlled release of Amphotericin B. Polymer (Guildf). 2009;50(18):4343–4351. doi:10.1016/j.polymer.2009.07.006
  • Sierpe R, Lang E, Jara P, et al. Gold Nanoparticles Interacting with β-Cyclodextrin–Phenylethylamine Inclusion Complex: a Ternary System for Photothermal Drug Release. ACS Appl Mater Interfaces. 2015;7(28):15177–15181. doi:10.1021/acsami.5b00186
  • Park C, Youn H, Kim H, et al. Cyclodextrin-covered gold nanoparticles for targeted delivery of an anti-cancer drug. J Mater Chem. 2009;19(16):2310–2315. doi:10.1039/b816209c
  • Gimenez IF, Anazetti MC, Melo PS, et al. Cytotoxicity on V79 and HL60 Cell Lines by Thiolated-β-Cyclodextrin-Au/Violacein Nanoparticles. J Biomed Nanotechnol. 2005;1(3):352–358. doi:10.1166/jbn.2005.041
  • Memişoğlu-Bilensoy E, Vural I, Bochot A, et al. Tamoxifen citrate loaded amphiphilic β-cyclodextrin nanoparticles: in vitro characterization and cytotoxicity. J Control Release. 2005;104(3):489–496. doi:10.1016/j.jconrel.2005.03.006
  • Hincal AA, Memişoğlu-Bilensoy E, Bochot A, Duchene D. β-cyclodextrines amphiphiles: Évaluation de nouveaux excipients pour la préparation de nanoparticules destinées à l’administration par voie parentérale ou topique. Bull Tech Gattefossé. 2003;96(2):59–71.
  • Zhou Y, Wang C, Wang F, Li C, Dong C, Shuang S. β-Cyclodextrin and its derivatives functionalized magnetic nanoparticles for targeting delivery of curcumin and cell imaging. Chinese J Chem. 2016;34(6):599–608. doi:10.1002/cjoc.201500756
  • Sandhu KK, McIntosh CM, Simard JM, Smith SW, Rotello VM. Gold nanoparticle-mediated transfection of mammalian cells. Bioconjug Chem. 2002;13(1):3–6. doi:10.1021/bc015545c
  • Wang G, Zhang J, Murray RW. DNA binding of an ethidium intercalator attached to a monolayer-protected gold cluster. Anal Chem. 2002;74(17):4320–4327. doi:10.1021/ac0257804
  • Fischer NO, McIntosh CM, Simard JM, Rotello VM. Inhibition of chymotrypsin through surface binding using nanoparticle-based receptors. Proc Natl Acad Sci U S A. 2002;99(8):5018–5023. doi:10.1073/pnas.082644099
  • Park S, Taton TA, Mirkin CA. Array-based electrical detection of DNA with nanoparticle probes. Science. 2002;295(5559):1503–1506.
  • Bohl Kullberg E, Bergstrand N, Carlsson J, et al. Development of EGF-conjugated liposomes for targeted delivery of boronated DNA-binding agents. Bioconjug Chem. 2002;13(4):737–743. doi:10.1021/bc0100713
  • Liu J, Alvarez J, Ong W, Román E, Kaifer AE. Phase transfer of hydrophilic, cyclodextrin-modified gold nanoparticles to chloroform solutions. J Am Chem Soc. 2001;123(45):11148–11154. doi:10.1021/ja003957a
  • Weisser M, Nelles G, Wenz G, Mittler-Neher S. Guest-host interactions with immobilized cyclodextrins. Sensors Actuators, B Chem. 1997;38-39(1–3):58–67. doi:10.1016/S0925-4005(97)80172-4
  • Sztandera K, Gorzkiewicz M, Klajnert-Maculewicz B. Gold nanoparticles in cancer treatment. Mol Pharm. 2019;16(1):1–23. doi:10.1021/acs.molpharmaceut.8b00810
  • Yao C, Zhang L, Wang J, et al. Gold nanoparticle mediated phototherapy for cancer. J Nanomater. 2016:5497136. doi:10.1155/2016/5497136
  • Alkilany AM, Murphy CJ. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanoparticle Res. 2010;12(7):2313–2333. doi:10.1007/s11051-010-9911-8
  • Hădărugă NG, Bandur GN, David I, Hădărugă DI. A review on thermal analyses of cyclodextrins and cyclodextrin complexes. Environ Chem Lett. 2019;17(1):349–373. doi:10.1007/s10311-018-0806-8
  • Fenyvesi É, Puskás I, Szente L. Applications of steroid drugs entrapped in cyclodextrins. Environ Chem Lett. 2019;17(1):375–391. doi:10.1007/s10311-018-0807-7
  • Tian B, Liu J. The classification and application of cyclodextrin polymers: a review. New J Chem. 2020;44(22):9137–9148. doi:10.1039/c9nj05844c
  • Heo DN, Ko W-K, Moon H-J, et al. Inhibition of osteoclast differentiation by gold nanoparticles functionalized with cyclodextrin curcumin complexes. ACS Nano. 2014;8(12):12049–12062.
  • Möller K, Macaulay B, Bein T. Curcumin encapsulated in crosslinked cyclodextrin nanoparticles enables immediate inhibition of cell growth and efficient killing of cancer cells. Nanomaterials. 2021;11(2):1–21. doi:10.3390/nano11020489
  • Lee D, Ko WK, Hwang DS, et al. Use of baicalin-conjugated gold nanoparticles for apoptotic induction of breast cancer cells. Nanoscale Res Lett. 2016;11(1):381. doi:10.1186/s11671-016-1586-3
  • Chen Y, Li N, Yang Y, Liu Y. A dual targeting cyclodextrin/gold nanoparticle conjugate as a scaffold for solubilization and delivery of paclitaxel. RSC Adv. 2015;5(12):8938–8941. doi:10.1039/c4ra13135e
  • Silva N, Riveros A, Yutronic N, et al. Photothermally controlled methotrexate release system using β-cyclodextrin and gold nanoparticles. Nanomaterials. 2018;8(12):1–15. doi:10.3390/nano8120985
  • Aykaç A, Martos-Maldonado MC, Casas-Solvas JM, et al. Β-Cyclodextrin-bearing gold glyconanoparticles for the development of site specific drug delivery systems. Langmuir. 2014;30(1):234–242. doi:10.1021/la403454p
  • Hoshikawa A, Nagira M, Tane M, Fukushige K, Tagami T, Ozeki T. Preparation of curcumin-containing α-, β-, and γ-cyclodextrin/ polyethyleneglycol-conjugated gold multifunctional nanoparticles and their in vitro cytotoxic effects on A549 cells. Biol Pharm Bull. 2018;41(6):908–914. doi:10.1248/bpb.b18-00010
  • Hu M, Chen J, Li ZY, et al. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev. 2006;35(11):1084–1094. doi:10.1039/b517615h
  • Norsten TB, Frankamp BL, Rotello VM. Metal directed assembly of terpyridine-functionalized gold nanoparticles. Nano Lett. 2002;2(12):1345–1348. doi:10.1021/nl020217m
  • Kolny J, Kornowski A, Weller H. Self-organization of cadmium sulfide and gold nanoparticles by electrostatic interaction. Nano Lett. 2002;2(4):361–364. doi:10.1021/nl0156843
  • Boal AK, Rotello VM. Intra-and Inter monolayer hydrogen bonding in amide-functionalized alkanethiol self-assembled monolayers on gold nanoparticles. Langmuir. 2000;16(24):9527–9532.
  • Si S, Mandal TK. pH-controlled reversible assembly of peptide-functionalized gold nanoparticles. Langmuir. 2007;23(1):190–195. doi:10.1021/la061505r
  • Li D, He Q, Cui Y, Li J. Fabrication of pH-responsive nanocomposites of gold nanoparticles/poly(4- vinylpyridine). Chem Mater. 2007;19(3):412–417.
  • Zhu M-Q, Wang L-Q, Exarhos GJ, Li ADQ. Thermosensitive gold nanoparticles. J Am Chem Soc. 2004;126(9):2656–2657. doi:10.1021/ja038544z
  • Aslan K, Luhrs CC, Pérez-Luna VH. Controlled and reversible aggregation of biotinylated gold nanoparticles with streptavidin. J Phys Chem B. 2004;108(40):15631–15639. doi:10.1021/jp036089n
  • Jin R, Wu G, Li Z, Mirkin CA, Schatz GC. What controls the melting properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc. 2003;125(6):1643–1654. doi:10.1021/ja021096v
  • Sharma J, Chhabra R, Yan H, Liu Y. pH-driven conformational switch of “i-motif” DNA for the reversible assembly of gold nanoparticles. Chem Commun. 2007;2(5):477–479. doi:10.1039/b612707j
  • Sudeep PK, Ipe BI, Thomas KG, et al. Fullerene-functionalized gold nanoparticles. A self-assembled Photoactive antenna-metal nanocore assembly. Nano Lett. 2002;2(1):29–35. doi:10.1021/nl010073w
  • Banerjee IA, Yu L, Matsui H. Application of host-guest chemistry in nanotube-based device fabrication: photochemically controlled immobilization of azobenzene nanotubes on patterned α-CD monolayer/Au substrates via molecular recognition. J Am Chem Soc. 2003;125(32):9542–9543. doi:10.1021/ja0344011
  • Liu Z, Jiang M. Reversible aggregation of gold nanoparticles driven by inclusion complexation. J Mater Chem. 2007;17(40):4249–4254. doi:10.1039/b707910a
  • Liu Y, Song S-H. Cyclodextrin-modified gold nanoparticle aggregate formed by simple host-guest interactions with 1,10-phenanthroline. J Chem Res. 2004;3(2):152–153. doi:10.3184/030823404323000567
  • Ye BF, Zhao YJ, Cheng Y, et al. Colorimetric photonic hydrogel aptasensor for the screening of heavy metal ions. Nanoscale. 2012;4(19):5998–6003. doi:10.1039/c2nr31601c
  • Lyu D, Chen S, Guo W. Liposome Crosslinked Polyacrylamide/DNA Hydrogel: a Smart Controlled-Release System for Small Molecular Payloads. Small. 2018;14(15):1–8. doi:10.1002/smll.201704039
  • Davis ME, Pun SH, Bellocq NC, et al. Self-assembling nucleic acid delivery vehicles via linear, water-soluble, cyclodextrin-containing polymers. Curr Med Chem. 2004;11(2):179–197. doi:10.2174/0929867043456179
  • Costa D, Valente AJM, Miguel MG, Queiroz J. Plasmid DNA hydrogels for biomedical applications. Adv Colloid Interface Sci. 2014;205:257–264. doi:10.1016/j.cis.2013.08.002
  • Liu Y, Wang H, Liang P, Zhang HY. Water-soluble supramolecular fullerene assembly mediated by metallobridged β-cyclodextrins. Angew Chemie Int Ed. 2004;43(20):2690–2694. doi:10.1002/anie.200352973
  • Li F, Wang C, Guo W. Multifunctional poly-N-isopropylacrylamide/DNAzyme microgels as highly efficient and recyclable catalysts for biosensing. Adv Funct Mater. 2018;28(10):1–8. doi:10.1002/adfm.201705876
  • Mahalingam V, Onclin S, Péter M, Ravoo BJ, Huskens J, Reinhoudt DN. Directed self-assembly of functionalized silica nanoparticles on molecular printboards through multivalent supramolecular interactions. Langmuir. 2004;20(26):11756–11762. doi:10.1021/la047982w
  • Pun SH, Bellocq NC, Liu A, et al. Cyclodextrin-modified polyethylenimine polymers for gene delivery. Bioconjug Chem. 2004;15(4):831–840.
  • Kihara F, Arima H, Tsutsumi T, Hirayama F, Uekama K. In vitro and in vivo gene transfer by an optimized α-cyclodextrin conjugate with polyamidoamine dendrimer. Bioconjug Chem. 2003;14(2):342–350. doi:10.1021/bc025613a
  • Forrest ML, Gabrielson N, Pack DW. Cyclodextrin-Polyethylenimine conjugates for targeted in vitro gene delivery. Biotechnol Bioeng. 2004;89(4):416–423. doi:10.1002/bit.20356
  • Park I-K, von Recum HA, Jiang S, Pun SH. Supramolecular assembly of cyclodextrin-based nanoparticles on solid surfaces for gene delivery. Langmuir. 2006;22(20):8478–8484. doi:10.1021/la061757s
  • Wang H, Chen Y, Li XY, Liu Y. Synthesis of oligo(ethylenediamino)-β-cyclodextrin modified gold nanoparticle as a DNA concentrator. Mol Pharm. 2007;4(2):189–198. doi:10.1021/mp060045s
  • Qiu J, Kong L, Cao X, Li A, Tan H, Shi X. Dendrimer-entrapped gold nanoparticles modified with β-cyclodextrin for enhanced gene delivery applications. RSC Adv. 2016;6(31):25633–25640. doi:10.1039/c6ra03839e
  • Qiu J, Kong L, Cao X, et al. Enhanced delivery of therapeutic siRNA into glioblastoma cells using dendrimer-entrapped gold nanoparticles conjugated with β-cyclodextrin. Nanomaterials. 2018;8(131):1–11. doi:10.3390/nano8030131
  • Zhao D, Chen Y, Liu Y. Construction and DNA condensation of cyclodextrin-coated gold nanoparticles with anthryl grafts. Chemistry. 2014;9:1895–1903. doi:10.1002/asia.201402078
  • Li X, Qi Z, Liang K, et al. An artificial supramolecular nanozyme based on β-cyclodextrin-modified gold nanoparticles. Catal Letters. 2008;124(3–4):413–417. doi:10.1007/s10562-008-9494-5
  • Cao R, Villalonga R, Fragoso A. Towards nanomedicine with a supramolecular approach: a review. IEEE Proc Nanobiotechnol. 2005;152(5):159–164. doi:10.1049/ip-nbt
  • Villalonga R, Fragoso A, Cao R, Ortiz PD, Villalonga ML, Damiao AE. Supramolecular-mediated immobilization of trypsin on cyclodextrin-modified gold nanospheres. Supramol Chem. 2005;17(5):387–391. doi:10.1080/10610270500126743
  • Villalonga R, Tachibana S, Cao R, Ortiz PD, Gomez L, Asano Y. Supramolecular-mediated immobilisation of L-phenylalanine dehydrogenase on β-cyclodextrin-modified gold nanospheres. J Exp Nanosci. 2006;1(2):249–260. doi:10.1080/17458080600684487
  • Zhao Y, Huang Y, Zhu H, Zhu Q, Xia Y. Three-in-one: sensing, self-assembly, and cascade catalysis of cyclodextrin modified gold nanoparticles. J Am Chem Soc. 2016;138(51):16645–16654. doi:10.1021/jacs.6b07590
  • Zhou DH, Liang CC, Nie J, Zhu XQ. Construction of a repairable fixed porous catalytic bed loaded with gold nanoparticles via multivalent host-guest interactions. ACS Sustain Chem Eng. 2017;5(9):7587–7593. doi:10.1021/acssuschemeng.7b00879
  • An P, Xue X, Rao H, et al. Gold nanozyme as an excellent co-catalyst for enhancing the performance of a colorimetric and photothermal bioassay. Anal Chim Acta. 2020;1125:114–127. doi:10.1016/j.aca.2020.05.047
  • Ling XY, Reinhoudt DN, Huskens J. Reversible attachment of nanostructures at molecular printboards through supramolecular glue. Chem Mater. 2008;20(11):3574–3578. doi:10.1021/cm703597w
  • Ludden MJW, Reinhoudt DN, Huskens J. Molecular printboards: versatile platforms for the creation and positioning of supramolecular assemblies and materials. Chem Soc Rev. 2006;35(11):1122–1134. doi:10.1039/b600093m
  • Beulen MWJ, Bügler J, Lammerink B, et al. Self-assembled monolayers of heptapodant-cyclodextrins on gold. Langmuir. 1998;14:6424–6429.
  • Onclin S, Mulder A, Huskens J, Ravoo BJ, Reinhoudt DN. Molecular printboards: monolayers β-cyclodextrins on silicon oxide surfaces. Langmuir. 2004;20(13):5460–5466. doi:10.1021/la049561k
  • Huskens J, Deij MA, Reinhoudt DN. Attachment of molecules at a molecular printboard by multiple host-guest interactions. Angew Chemie Int Ed. 2002;41(23):4467–4471. doi:10.1002/1521-3773(20021202)41:23<4467::AID-ANIE4467>3.0.CO;2-M
  • Crespo-Biel O, Dordi B, Reinhoudt DN, Huskens J. Supramolecular layer-by-layer assembly: alternating adsorptions of guest- and host-functionalized molecules and particles using multivalent supramolecular interactions. J Am Chem Soc. 2005;127(20):7594–7600. doi:10.1021/ja051093t
  • Crespo-Biel O, Jukovic A, Karlsson M, Reinhoudt DN, Huskens J. Multivalent aggregation of cyclodextrin gold nanoparticles and adamantyl-terminated guest molecules. Isr J Chem. 2005;45(3):353–362. doi:10.1560/af3p-k2a6-mdck-1678
  • Maury P, Crespo-Biel O, Péter M, Reinhoudt DN, Huskens J. Integration of top-down and bottom-up nanofabrication schemes. Mater Res Soc Symp Proc. 2005;901:441–449. doi:10.1557/proc-0901-rb12-01
  • Ling XY, Phang IY, Reinhoudt DN, Vancso GJ, Huskens J. Supramolecular layer-by-layer assembly of 3D multicomponent nanostructures via multivalent molecular recognition. Int J Mol Sci. 2008;9(4):486–497. doi:10.3390/ijms9040486
  • Crespo-Biel O, Péter M, Bruinink CM, Ravoo BJ, Reinhoudt DN, Huskens J. Multivalent host-guest interactions between β-cyclodextrin self-assembled monolayers and poly(isobutene-alt-maleic acid)s modified with hydrophobic guest moieties. Chem - a Eur J. 2005;11(8):2426–2432. doi:10.1002/chem.200400393
  • Zuo F, Luo C, Zheng Z, Ding X, Peng Y. Supramolecular assembly of β-cyclodextrin-capped gold nanoparticles on ferrocene-functionalized ITO surface for enhanced voltammetric analysis of ascorbic acid. Electroanalysis. 2008;20(8):894–899. doi:10.1002/elan.200704113
  • Gómez-Graña S, Pérez-Juste J, Hervés P. Cyclodextrins and inorganic nanoparticles: another tale of synergy. Adv Colloid Interface Sci. 2021;288:102338. doi:10.1016/j.cis.2020.102338
  • Yun Y. Electrochemical sensor for ultrasensitive determination of bisphenol a based on gold nanoparticles/β-cyclodextrin functionalized reduced graphene oxide nanocomposite. Int J Electrochem Sci. 2016;11(4):2778–2789. doi:10.20964/110402778
  • Wu H, Fang F, Wang C, Hong X, Chen D, Huang X. Selective molecular recognition of low density lipoprotein based on β-cyclodextrin coated electrochemical biosensor. Biosensors. 2021;11(7):1–10. doi:10.3390/bios11070216
  • Chen M, Diao G. Electrochemical study of mono-6-thio-β-cyclodextrin/ferrocene capped on gold nanoparticles: characterization and application to the design of glucose amperometric biosensor. Talanta. 2009;80(2):815–820. doi:10.1016/j.talanta.2009.07.068
  • Díez P, Piuleac CG, Martínez-Ruiz P, et al. Supramolecular immobilization of glucose oxidase on gold coated with cyclodextrin-modified cysteamine core PAMAM G-4 dendron/Pt nanoparticles for mediatorless biosensor design. Anal Bioanal Chem. 2013;405(11):3773–3781. doi:10.1007/s00216-012-6491-8
  • Zheng X, Li L, Cui K, et al. Ultrasensitive enzyme-free biosensor by coupling cyclodextrin functionalized Au nanoparticles and high-performance Au-paper electrode. ACS Appl Mater Interfaces. 2018;10(4):3333–3340. doi:10.1021/acsami.7b17037
  • Zhang NMY, Qi M, Wang Z, et al. One-step synthesis of cyclodextrin-capped gold nanoparticles for ultra-sensitive and highly-integrated plasmonic biosensors. Sensors Actuators, B Chem. 2019;286:429–436. doi:10.1016/j.snb.2019.01.166
  • Luo S, Wu Y, Mou Q, Li J, Luo X. A thio-β-cyclodextrin functionalized graphene/gold nanoparticle electrochemical sensor: a study of the size effect of the gold nanoparticles and the determination of tetrabromobisphenol A. RSC Adv. 2019;9(31):17897–17904. doi:10.1039/c9ra02614b
  • Rajamanikandan R, Lakshmi AD, Ilanchelian M. Smart phone assisted, rapid, simplistic, straightforward and sensitive biosensing of cysteine over other essential amino acids by β-cyclodextrin functionalized gold nanoparticles as a colorimetric probe. New J Chem. 2020;44(28):12169–12177. doi:10.1039/d0nj02152k
  • Kapan B, Kurbanoglu S, Esenturk EN, Soylemez S, Toppare L. Electrochemical catechol biosensor based on β-cyclodextrin capped gold nanoparticles and inhibition effect of ibuprofen. Process Biochem. 2021;108:(June):80–89. doi:10.1016/j.procbio.2021.06.004
  • Fang A, Feng D, Luo X, Shi F. Gold nanoparticles prepared with cyclodextrin applied to rapid vertical flow technology for the detection of Brucellosis. Biosensors. 2022;12(7):75. doi:10.3390/bios12070531
  • Peng L, You M, Wu C, et al. Reversible phase transfer of nanoparticles based on photoswitchable host-guest chemistry. ACS Nano. 2014;8(3):2555–2561. doi:10.1021/nn4061385
  • Tokuyama H, Yamago S, Nakamura E, Shiraki T, Sugiura Y. Photoinduced biochemical activity of fullerene carboxylic acid. J Am Chem Soc. 1993;115(17):7918–7919. doi:10.1021/ja00070a064
  • Liu Y, Zhao YL, Chen Y, Liang P, Li L. A water-soluble β-cyclodextrin derivative possessing a fullerene tether as an efficient photodriven DNA-cleavage reagent. Tetrahedron Lett. 2005;46(14):2507–2511. doi:10.1016/j.tetlet.2005.01.181
  • Xie SY, Bin HR, Yu LJ, Ding J, Zheng LS. Microwave synthesis of fullerenes from chloroform. Appl Phys Lett. 1999;75(18):2764–2766. doi:10.1063/1.125142
  • Murthy CN, Geckeler KE. The water-soluble β-cyclodextrin-[60]fullerene complex. Chem Commun. 2001;1(13):1194–1195. doi:10.1039/b102142g
  • Liu Y, Yang YW, Chen Y. Thio[2-(benzoylamino)ethylamino]-β-CD fragment modified gold nanoparticles as recycling extractors for [60]fullerene. Chem Commun. 2005;2(33):4208–4210. doi:10.1039/b507650a
  • Liu J, Alvarez J, Ong W, Kaifer AE. Network aggregates formed by C60 and gold nanoparticles capped with γ-cyclodextrin hosts. Nano Lett. 2001;1(2):57–60. doi:10.1021/nl0001813
  • Liu Y, Yang YW, Chen Y, Zou HX. Polyrotaxane with cyclodextrins as stoppers and its assembly behavior. Macromolecules. 2005;38(13):5838–5840. doi:10.1021/ma047327v
  • Liu Y, Wang H, Chen Y, Ke CF, Liu M. Supramolecular aggregates constructed from gold nanoparticles and L-Try-CD polypseudorotaxanes as captors for fullerenes. J Am Chem Soc. 2005;127(2):657–666. doi:10.1021/ja046294w