561
Views
6
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Enhanced Cosmeceutical Potentials of the Oil from Gryllus bimaculatus de Geer by Nanoemulsions

, , , , , , , , & show all
Pages 2955-2972 | Received 17 Feb 2023, Accepted 31 May 2023, Published online: 03 Jun 2023

References

  • Yen AL. Edible insects: traditional knowledge or western phobia? Entomol Res. 2009;39:289–298.
  • Nowakowski AC, Miller AC, Miller ME, et al. Potential health benefits of edible insects. Crit Rev Food Sci Nutr. 2022;62(13):3499–3508. doi:10.1080/10408398.2020.1867053
  • Kim TK, Yong HI, Kim YB, et al. Edible insects as a protein source: a review of public perception, processing technology, and research trends. Food Sci Anim Resour. 2019;39:521–540. doi:10.5851/kosfa.2019.e53
  • Madau FA, Arru B, Furesi R, et al. Insect farming for feed and food production from a circular business model perspective. Sustainability. 2020;12:5418.
  • Antoniak MA, Szymkowiak A, Pepliński B. The source of protein or its value? Consumer perception regarding the importance of meat (-like) product attributes. Appl Sci. 2022;12:4128. doi:10.3390/app12094128
  • Grdeń AS, Sołowiej BG. Macronutrients, amino and fatty acid composition, elements, and toxins in high-protein powders of crickets, Arthrospira, single cell protein, potato, and rice as potential ingredients in fermented food products. Appl Sci. 2022;12:12831. doi:10.3390/app122412831
  • Mugova AK, Zvidzai CJ, Musundire R. Nutritional profile of the wild harvested armoured cricket (Acanthoplus discoidalis)(Orthoptera: Tettigoniidae) in northern region of Zimbabwe. J Insects Food Feed. 2022;8:417–425. doi:10.3920/JIFF2021.0010
  • Udomsil N, Imsoonthornruksa S, Gosalawit C, et al. Nutritional Values and functional properties of house cricket (Acheta domesticus) and field cricket (Gryllus bimaculatus). Food Sci Technol Res. 2019;25(4):597–605. doi:10.3136/fstr.25.597
  • Benzertiha A, Kierończyk B, Rawski M, et al. Insect fat in animal nutrition–a review. Ann Anim Sci. 2020;20:1217–1240. doi:10.2478/aoas-2020-0076
  • Franco A, Salvia R, Scieuzo C, et al. Lipids from insects in cosmetics and for personal care products. Insects. 2021;13(1):41. doi:10.3390/insects13010041
  • Almeida C, Rijo P, Rosado C. Bioactive compounds from Hermetia illucens larvae as natural ingredients for cosmetic application. Biomolecules. 2020;10:976. doi:10.3390/biom10070976
  • Verheyen GR, Ooms T, Vogels L, et al. Insects as an alternative source for the production of fats for cosmetics. J Cosmet Sci. 2018;69:187–202.
  • Verheyen GR, Meersman F, Noyens I, et al. The application of mealworm (Tenebrio molitor) oil in cosmetic formulations. Eur J Lipid Sci Technol. 2023;125:2200193. doi:10.1002/ejlt.202200193
  • Halloran A, Hanboonsong Y, Roos N, et al. Life cycle assessment of cricket farming in north-eastern Thailand. J Clean Prod. 2017;156:83–94. doi:10.1016/j.jclepro.2017.04.017
  • Halloran A, Roos N, Hanboonsong Y. Cricket farming as a livelihood strategy in Thailand. Geogr J. 2017;183(1):112–124. doi:10.1111/geoj.12184
  • Gurpreet K, Singh SK. Review of nanoemulsion formulation and characterization techniques. Indian J Pharm Sci. 2018;80:781–789. doi:10.4172/pharmaceutical-sciences.1000422
  • Izquierdo P, Esquena J, Tadros TF, et al. Formation and stability of nano-emulsions prepared using the phase inversion temperature method. Langmuir. 2002;18:26–30.
  • Talegaonkar S, Azeem A, Ahmad FJ, et al. Microemulsions: a novel approach to enhanced drug delivery. Recent Pat Drug Deliv Formul. 2008;2:238–257. doi:10.2174/187221108786241679
  • Gulotta A, Saberi AH, Nicoli MC, et al. Nanoemulsion-based delivery systems for polyunsaturated (ω-3) oils: formation using a spontaneous emulsification method. J Agric Food Chem. 2014;62:1720–1725. doi:10.1021/jf4054808
  • Prommaban A, Kuanchoom R, Seepuan N, et al. Evaluation of fatty acid compositions, antioxidant, and pharmacological activities of pumpkin (Cucurbita moschata) seed oil from aqueous enzymatic extraction. Plants. 2021;10:1582. doi:10.3390/plants10081582
  • Re R, Pellegrini N, Proteggente A, et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26(9–10):1231–1237. doi:10.1016/S0891-5849(98)00315-3
  • Kedare SB, Singh RP. Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol. 2011;48:412–422. doi:10.1007/s13197-011-0251-1
  • Griffin SP, Bhagooli R. Measuring antioxidant potential in corals using the FRAP assay. J Exp Mar Biol Ecol. 2004;302(2):201–211. doi:10.1016/j.jembe.2003.10.008
  • Natrah FMI, Yusoff FM, Shariff M, et al. Screening of Malaysian indigenous microalgae for antioxidant properties and nutritional value. J Appl Phycol. 2007;19(6):711–718. doi:10.1007/s10811-007-9192-5
  • Shin NH, Ryu SY, Choi EJ, et al. Oxyresveratrol as the potent inhibitor on dopa oxidase activity of mushroom tyrosinase. Biochem Biophys Res Commun. 1998;243:801–803. doi:10.1006/bbrc.1998.8169
  • Thring TS, Hili P, Naughton DP. Anti-collagenase, anti-elastase and anti-oxidant activities of extracts from 21 plants. BMC Complement Altern Med. 2009;9:1–11. doi:10.1186/1472-6882-9-1
  • Laothaweerungsawat N, Sirithunyalug J, Chaiyana W. Chemical compositions and anti-skin-ageing activities of Origanum vulgare L. essential oil from tropical and Mediterranean region. Molecules. 2020;25:1101. doi:10.3390/molecules25051101
  • Somwongin S, Chantawannakul P, Chaiyana W. Antioxidant activity and irritation property of venoms from Apis species. Toxicon. 2018;145:32–39. doi:10.1016/j.toxicon.2018.02.049
  • Bagley DM, Waters D, Kong BM. Development of a 10-day chorioallantoic membrane vascular assay as an alternative to the Draize rabbit eye irritation test. Food Chem Toxicol. 1994;32:1155–1160. doi:10.1016/0278-6915(94)90131-7
  • Chaiyana W, Anuchapreeda S, Leelapornpisid P, et al. Development of microemulsion delivery system of essential oil from Zingiber cassumunar Roxb. rhizome for improvement of stability and anti-inflammatory activity. AAPS Pharm Sci Tech. 2017;18(4):1332–1342. doi:10.1208/s12249-016-0603-2
  • Kim EM, Lim JH, Chang YJ, et al. Changes in the quality characteristics of cricket (Gryllus bimaculatus) under various processing conditions. Korean J Food Preserv. 2015;22:218–224. doi:10.11002/kjfp.2015.22.2.218
  • Bialek A, Bialek M, Jelinska M, et al. Fatty acid profile of new promising unconventional plant oils for cosmetic use. Int J Cosmet Sci. 2016;38:382–388. doi:10.1111/ics.12301
  • Huang TH, Wang PW, Yang SC, et al. Cosmetic and therapeutic applications of fish oil’s fatty acids on the skin. Mar Drugs. 2018;16:256. doi:10.3390/md16080256
  • Cheung SCM, Szeto YT, Benzie IF. Antioxidant protection of edible oils. Plant Foods Hum Nutr. 2007;62:39–42. doi:10.1007/s11130-006-0040-6
  • Sánchez-Moreno C. Methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Sci Technol Int. 2002;8:121–137. doi:10.1177/1082013202008003770
  • Munteanu IG, Apetrei C. Analytical methods used in determining antioxidant activity: a review. Int J Mol Sci. 2021;22:3380. doi:10.3390/ijms22073380
  • Logani MK, Davies RE. Lipid oxidation: biologic effects and antioxidants—a review. Lipids. 1980;15:485–495. doi:10.1007/BF02534079
  • Niki E. Do antioxidants impair signaling by reactive oxygen species and lipid oxidation products? FEBS Lett. 2012;586:3767–3770. doi:10.1016/j.febslet.2012.09.025
  • Baurin N, Arnoult E, Scior T, et al. Preliminary screening of some tropical plants for anti-tyrosinase activity. J Ethnopharmacol. 2002;82(2–3):155–158. doi:10.1016/S0378-8741(02)00174-5
  • Singh BK, Park SH, Lee HB, et al. Kojic acid peptide: a new compound with anti-tyrosinase potential. Ann Dermatol. 2016;28:555–561. doi:10.5021/ad.2016.28.5.555
  • Farage MA, Miller KW, Elsner P, et al. Intrinsic and extrinsic factors in skin ageing: a review. Int J Cosmet Sci. 2008;30(2):87–95. doi:10.1111/j.1468-2494.2007.00415.x
  • Baumann L. Skin ageing and its treatment. J Pathol. 2007;211:241–251. doi:10.1002/path.2098
  • López-García J, Lehocký M, Humpolíček P, et al. HaCaT keratinocytes response on antimicrobial atelocollagen substrates: extent of cytotoxicity, cell viability and proliferation. J Funct Biomater. 2014;5(2):43–57. doi:10.3390/jfb5020043
  • Casadó A, Mora M, Sagristá ML, et al. Improved selectivity and cytotoxic effects of irinotecan via liposomal delivery: a comparative study on Hs68 and HeLa cells. Eur J Pharm Sci. 2017;109:65–77. doi:10.1016/j.ejps.2017.07.024
  • Luepke NP, Kemper FH. The HET-CAM test: an alternative to the Draize eye test. Food Chem Toxicol. 1986;24:495–496. doi:10.1016/0278-6915(86)90099-2
  • Acid L. Final report on the safety assessment of oleic acid, laurie acid, palmitic acid, myristic acid, and stearic acid. J Am Coll Toxicol. 1987;6:321–401.
  • Ben-Shabat S, Baruch N, Sintov AC. Conjugates of unsaturated fatty acids with propylene glycol as potentially less-irritant skin penetration enhancers. Drug Dev Ind Pharm. 2007;33:1169–1175. doi:10.1080/03639040701199258
  • Stillman MA, Maibach HI, Shallita AR. Relative irritancy of free fatty acids of different chain length. Contact Derm. 1975;1:65–69.
  • Kränke B, Komericki P, Aberer W. Olive oil–contact sensitizer or irritant? Contact Derm. 1997;36:5–10.
  • Schmidts T, Schlupp P, Gross A, et al. Required HLB determination of some pharmaceutical oils in submicron emulsions. J Dispers Sci Technol. 2012;33(6):816–820. doi:10.1080/01932691.2011.584800
  • Bhatt P, Madhav S. A detailed review on nanoemulsion drug delivery system. Int J Pharm Sci Res. 2011;2:2482.
  • Smeets NM, Moraes RP, Wood JA, et al. A new method for the preparation of concentrated translucent polymer nanolatexes from emulsion polymerization. Langmuir. 2011;27(2):575–581. doi:10.1021/la1038427
  • Danaei M, Dehghankhold M, Ataei S, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10:57. doi:10.3390/pharmaceutics10020057
  • Souto EB, Cano A, Martins-Gomes C, et al. Microemulsions and nanoemulsions in skin drug delivery. Bioengineering. 2022;9(4):158. doi:10.3390/bioengineering9040158
  • Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 1). Trop J Pharm Res. 2013;12:255–264.
  • Polychniatou V, Tia C. Study of formulation and stability of co-surfactant free water-in-olive oil nano-and submicron emulsions with food grade non-ionic surfactants. J Am Oil Chem Soc. 2014;91:79–88. doi:10.1007/s11746-013-2356-3
  • Rehman A, Qunyi T, Sharif HR, et al. Biopolymer based nanoemulsion delivery system: an effective approach to boost the antioxidant potential of essential oil in food products. Carbohydr Polym Technol Appl. 2021;2:100082.
  • Romes NB, Abdul Wahab R, Abdul Hamid M. The role of bioactive phytoconstituents-loaded nanoemulsions for skin improvement: a review. Biotechnol Biotechnol Equip. 2021;35:711–730. doi:10.1080/13102818.2021.1915869
  • Zorzi GK, Caregnato F, Moreira JCF, Teixeira HF, Carvalho ELS. Antioxidant effect of nanoemulsions containing extract of Achyrocline satureioides (Lam) DC—Asteraceae. AAPS Pharm Sci Tech. 2016;17:844–850. doi:10.1208/s12249-015-0408-8